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Part 1: Main Results
e Refresher on quantum spin systems
e Approach to thermal equilibrium
e Constrained approach to equilibrium

Part 2: Main Tools
e Structural theory of constants of motion
e Dynamical conservation laws
e Partial solutions to Conjectures

Part 3: Approach to Equilibrium in non-integrable systems
e Japanese School of non-integrable systems
e Link between the two research programs
e Results for the Ising chain and other models



Quantum lattice spin systems



Quantum lattice spin systems

e Lattice Z?, family of translations {7x},cz¢, family F of finite subsets of Z¢

e Fixed Hilbert space Ho := C"

o H, 1= Ho for every x € Z¢
o Hx = QuexHx for X € F, and Ux := bounded operators on Hx
e Ux>3A AQlgx EUg for XCXEF

e Local observables Uioc := Uy Ux
e Spin C*-algebra U is the norm-completion of U

e Translation invariant states: S; = {p: U — C | p positive, linear, p(1) =1 and po 7 = p Vx € Z9}



Interactions, local Hamiltonians, dynamics

e Interaction: family {®(X)}xcr such that ®(X) € Ux is self-adjoint.
We always assume translation invariance: 7(®(X)) = &(X +x) Vx € Z¢ VX € F

o Ho(A) = Z ®(X) is the local Hamiltonian on A € F
XCA

e Local dynamics on A: ) .
Oé(tpﬁ/\(A) _ elt‘Hq,(/\)/4671th>(/\)7 Ac Z/{/\

e We say the (global) dynamics exists if for all A € U/ the limit
ab(A) = Iimd ao(A)

exists and is uniform for t in compact sets, where A 1 Z9 denotes the limit over an increasing and
exhaustive family of cubes in Z9 centred at 0

e Time evolution of a state: p; .= poaj



Spaces of interactions

o Big space of interactions B, = {® : [|®||, < oo} where

jor, - 37 100

X350

e Small space of interactions Bs = {® : |||, < oo} where

lefl, = 1e(X)li

X30
e Finite range interactions:
Be={® : IR N diam(X) > R = &(X) =0}
We have By C Bs C By, both By and By, are Banach spaces, and Bs is a dense subset of each

e «p may not exist for ® € Bs

e ¢ does exist for ® € Br



Gibbs variational principle and Equilibrium States

Let ® € By, and p € S1. Notation: pp € U satisfies p(A) = tr(paA) for all A € Up (density matrix)
e Specific entropy of p:

s(p) == — lim ﬁ tr(pa log pa) € [0, log N] It is affine & upper semi-continuous
ATZ

e Specific energy of ¢:
®(X)

Eo := XZ X eu It satisfies/\IiTrgd ﬁp(Hd)(/\)) = p(Es) for all p € Sr.
50

e Pressure of :

P(®) = lim & Iog(tr(e7H°(A))) < 00
arzd M

Gibbs variational principle: P(3%) = sup,s (s(p) — Bp(Es)) for inverse temperature 8
Maximizers are the equilibrium states: Seq(8P) = {p € S1| P(8P) = s(p) — Bp(Es)}

Dual variational principle: s(p) = infocs, (P(3%) + Bp(Eo))



Surface energies

Surface energies for A € F of an interaction ¢ are defined as

Wo(A)= > &(X)
XNAAD
XNAC#D

(Ho(N) — Ho(A) — Ho (A \ A))

lim
N1zd
On physical grounds, surface energies should play a central role in the study of approach to equilibrium

e Surface energies may not exist for ¢ € 5y,
e Surface energies do exist for ® € B
Proposition

Let ® € B;. Then Wx(A) exists for every A € F, and Iimdﬁ We(A) = 0.
A7,



Bsq space of physical interactions

For ® € B consider the x-derivation d¢ : Uioe — U defined by

So(A) = > [®(X), Al = A|iTr;1d[/L/q,(/\),A], A € Unoe
XeF }

It is closable and we denote its closure again by ds.

Definition of Bgq

Bsa = {® € Bs : do generates dynamics awe on U}

Theorem

de generates dynamics ae on U if and only if (i & do)Uioc is dense in U. In that case

ay(A) = Iimdeitl‘l“’(/\)A(fi”""’(A)7 Ael,
MZ

where the limit is uniform for t in compacts.



Bsq space of physical interactions

The naturalness of Bsq stems also from the following result

Theorem
Suppose that ®,W € Bsq. Then the following statements are equivalent:

e & and W are equivalent — to be understood intuitively for now
o Seq(P) N Seq(V) # 0
® Seq(P) = Seq(V)

® o = Qv
In contrast, By, contains non-equivalent interactions that share an equilibrium state, which is pathological

Important classes of interactions are in Bsq which we will see later on:
e The well-known space of exponentially-decaying interactions: B" C Bgq for r > 0.

e We will also work with the space of diameter-interactions: Bﬁ}iam C Bgq for v > d.



Regularity

Specific relative entropy of p € St with respect to w € St (assuming the limit exists):

s(plw) : 7 tr(pa(log pr — logwa)) > 0

= lim
A1zd

Definition

A pair (w, V) € 81 X Bga is called regular if the relative entropy s(p|w) exists for all p € S; and satisfies the

entropy balance equation:
s(plw) = =s(p) + p(Ev) + P(V).

(w, W) is regular = w € Seq(V)

R-Conjecture: (w, V) is regular for every W € Byq and w € Seq(V)
e It is a very hard open problem involving the structural aspects of QSS.

o Thm: If W € B" with |[W| < r, or W& B;ind=1, then (w, V) is regular for every w € Seq(V)
[Jaksi¢, Pillet, Tauber'24]



Approach to Equilibrium

10



Equilibrium Steady States (ESS)

Let w € St and ® € Byq. For T > 0 define

1 /7 .
ET:?/O woag dt

and consider the set of Equilibrium Steady States (ESS):

Si(w, ®) = {weak*-limit points of (Wr)r>0 as T — oo}.

wy € St (w, P) iff wy = limp—o0 W, for some subsegence T, T co

Si(w,®) ={ws} iff wy =limroc@r

e w. is ag-invariant

wi = w iff w is ae-invariant, which is a trivial setting (which we always exclude)

11



Basic Conservation Laws

We postulate the conservation of specific entropy and energy:

Yw € St YVt > 0 s(wo ap) = s(w) and (wo ag)(Es) = w(Es)

Fix the initial state w € S;. For the time average we get:

VT >0 s(w) = s(wr) and w(Es) = wr(Eos)

So for any w; € Sy (w, P):
s(w) < s(wy) and w(Eo) = wi(Es).

e FEo is a constant of motion of the dynamics o
e Ruelle problem: when does s(w) < s(w4) hold?

e We will further discuss these (and other) conservation laws tomorrow.

12



Approach to Thermal Equilibrium — definition

Let w € St and ® € Bsq. Consider the initial specific energy ey := w(Es). We know it is preserved.

Setting the equilibrium inverse temperature (3.

We set such S, that for some veq € Seq(B+P) we have veq(Es) = €, provided such S, exists.

If such B, exists, it is unique. If it does not exist, approach to thermal equilibrium is impossible.

13



Approach to Thermal Equilibrium — definition

Let w € St and ® € Bsq. Consider the initial specific energy ey := w(Es). We know it is preserved.

Setting the equilibrium inverse temperature (3.

We set such S, that for some veq € Seq(B+P) we have veq(Es) = €, provided such S, exists.
If such B, exists, it is unique. If it does not exist, approach to thermal equilibrium is impossible.

Definition of Approach to Thermal Equilibrium
The pair (w, ®) has the property of Approach to Thermal Equilibrium if

(1) Si(w,®) ={w+}
(2) Wi € Seq(B.0)

e The dynamical problem (1) can be answered only in the context of specific models.

e We focus on the structural theory of (2), developing it for w; € Sy(w, P).
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Constants of Motion & Admissible States

Consider the real vector space Uear Of self-adjoint elements of .

Constant of Motion
We call C € U,ca1 a constant of motion for ® € Bsg when

poay(C)=p(C) Vp e SVt eR

We denote by € = €(ae) the set of all constants of motion for ®.
e There is a natural equivalence structure in €
e Recall Ep € €. The choice of §. guarantees w(Eo) = €9 = Veq(Es)

e Suppose that for each veq € Seq(B:P) satisfying eo =veq(Es) there exists C €€ such that w(C)#veq(C)
Approach to Thermal Equilibrium is then impossible!

Admissible States
The initial state w is called admissible for veq € Seq(B+®P) when w(C) = veq(C) for all C € €.

14



Approach to Thermal Equilibrium — assumptions

Let w € St and ® € Byg. Recall we assume the basic conservation laws, in particular Ee € €.

Theorem Jaksié, Pillet, S, Tauber '25
Assume that Seq(8+P) = {veq} with (veq, 5+ P) regular, and that w is admissible for veq.
For wy € Sy (w, ®), the following statements are equivalent:

(1) ws = vreq

(2) wy € Seq(V4) with W € Byq such that (w4, V) is regular, and Ey, € €

e Regularity of (veq, 3+®) and uniqueness of veq can be assured by taking sufficiently nice ®.
Admissibility of w is a physical constraint.

e Minimal physicality requirement W, € Bgq has to be established for a specific model. (Maybe it can be
proven for sufficiently nice ® or w?) Either it holds or the situation is unphysical.

e Regularity of (w4, W) follows from the R-Conjecture or it can be established for a specific model.

e Conditions assuring Ey, € € will be discussed tomorrow.

15



Approach to Thermal Equilibrium — proof

(2) = (1) We get s(w) > s(veq) as follows:

S(vealios) = —5{veq) + VealEv,) + (V) (regularity of (wi, ¥1))
= —5(Veq) + w(Ew,) + P(Vy) (admissibility)
= —s(veq) + ws (Ev,) + P(V.) (Ev, € ©)
= —5(Veq) +s(wi) 2 0 (Wi € Seq(V+))

The opposite inequality s(wy) < s(veq) in proven analogously

16



Approach to Thermal Equilibrium — proof

(2) = (1) We get s(w) > s(veq) as follows:

S(vealios) = —5{veq) + VealEv,) + (V) (regularity of (V')
= —5(Veq) + w(Ew,) + P(Vy) (admissibility)
= —s(veq) + ws (Ev,) + P(V.) (Ev, € ©)
= —5(Veq) +s(wi) 2 0 (Wi € Seq(V+))

The opposite inequality s(wy) < s(veq) in proven analogously

S(w+Iveq) = —5(ws) + Botos (Eo) + P(B.) (regularity of (veq, 5.))
= —s(w4) + Bsleq(Es) + P(B:P) (Es € € and admissibility)
= —s(wi) +5(veq) 2 0 (veq € Seq(B-®))

So we have s(w;) = s(veq) and wi(Ee) = veq(Es). Gibbs var. principle gives wy € Seq(S+®P) = {Veq}

16



Approach to Thermal Equilibrium — admissibility

Let w € St and ® € Byg. Recall we assume the basic conservation laws, in particular Eo € €.

Theorem Jaksi¢, Pillet, S, Tauber '25
Assume that Seq(8:«P) = {Veq} with (Veq, B+ P) regular, and that w is admissible for veq.
For wy € Sy(w, ®), the following statements are equivalent:

(1) wy = veq

(2) wi € Seq(W4) with W € Bgq such that Ey, € € and (w4, V) is regular.

e The admissibility of w with respect to veq is a physical constraint.
e Now we will discuss the case when w is not admissible. Approach to Thermal Equilibrium cannot happen

e Principle of maximum entropy:
In the long time the system settles in a state that maximizes entropy while respecting constants of motion.

17



Ruelle’s physical equivalence

Equivalence of observables

Let A, B & Urear. A~o B < 3ce€R Ywe S w(A)=w(B)+c

A~ B <= Ywe St w(A) =w(B)

Equivalence of interactions

Let W, ® € By,. Ve & eBy e Ey~o Eo
Vg e By < Ey ~s0 Eo

Ruelle’s maps

The following maps are isometries:
Bb/NI 2 [\U] — [E\U] € Z/[real/’\’o

By /~s1 3 [V] — [Ey] € Urear/~s0
What we will see most often: C € € — V¢ € By, — Ey.. Then Ey. ~y0 C, i.e. w(C) =w(Ey.) Yw € &1

18



Regular and Physical Constants of Motion

We distinguish two special classes of constants of motion. Let C € €.
Regular constants of motion
o CeCy <= (p,Vc) regular for every p € Seq(Vc)

e Equilibria of Creg: p € Seq(Creg) <= IC € Cieg p € Seq(Ve)

Physical constants of motion
e Celhys <= VceDBa

e Equilibria of €pys:

P E Seq(Cphys) <= FCECpnys pESeq(Ve) <= TV EByg pESeq(V) and Ey € €

e Under R-conjecture: Cphys C Creg

e Note that w; € Seq(€phys) is equivalent to the condition we need for ATE

19



Variational characterization of Scy(Ceg)

Theorem
Let wy € Sy(w,®P). Then
s(wy) < s(w) +infres.q(ereg) S(wlP)
and
W € Seql@reg) = INfpesig(eneg) S@I) = s(wlws) = s(w) — s(w)

Proof. Let C € €.eg be associated to W¢. Recall C ~s0 Ey.. For every p € Seq(Wc) and T >0

s(w|p) = —s(w) + w(Ew.) + P(W¢) (regularity of (p, W¢))
= —s(w) + wr(Ev.) + P(V¢) (Ceq)
= —s(w) + wi(Ew.) + P(V¢) (Th 1 oo so that wr, — wy)
> —s(w) + s(w4) (Gibbs variational principle)

Hence inf cs. (¢,q) S(w]p) > s(w+) — s(w). The other claim follows.

20



Minimizers of relative entropy

Denote the set of minimizers by Seq,+(Creg) = Seq(Creg) N St (w, P).
Proposition
o Let wi, @y € Seqy+(Creg). Then s(wi) = s(@4) and s(w4|@4) = 0.

e There exists C € €peg, unique up to equivalence, such that Seq 4 (Creg) C Seq(Vc).

Proof. Equality of specific entropies follows immediately by the previous theorem.

For specific relative entropy, let C € C.ez be such that wi € Seq(W¢). Then

S(@4|wy) = —s(@4) + O (Ewe) + P(We) (regularity of (wi,W¢))
= —s(w) + w(Ev.) + P(V¢) (entropy and C conserved)
= —s(wt) + wi(Ew.) + P(Wc) =0, (entropy and C conserved & GVP)

This also means that &} € Seq(Wc¢), which yields the second claim.

21



Constrained Approach to Equilibrium

Constrained Approach to Equilibrium
The pair (w, ) has the property of the Constrained Approach to Equilibrium if

(1) St(w,®) ={w+}

(2) wi € Seq(Cphys) and s(w+) = s(w) + inf pes.q(€pnys) S(W]p) with unique minimizer w...
Interpretation of (2): The system relaxes to a state of maximal entropy compatible with constant of motions.

Also, by Quantum Stein lemma: Among all states in Seq(€pnys), wy is the least distinguishable from w.
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Constrained Approach to Equilibrium

Constrained Approach to Equilibrium
The pair (w, ) has the property of the Constrained Approach to Equilibrium if

(1) St(w,®) ={w+}

(2) wi € Seq(Cphys) and s(w+) = s(w) + inf pes.q(€pnys) S(W]p) with unique minimizer w...
Interpretation of (2): The system relaxes to a state of maximal entropy compatible with constant of motions.
Also, by Quantum Stein lemma: Among all states in Seq(€pnys), wy is the least distinguishable from w.

e Assume R-Conjecture. Then wi € Seq(€phys) C Seq(Creg), S0 the variational char. of Seq(Creg) holds.

Thus s(w+) = s(w) + inf pes.q (€pnye) S(W]P) with minimizer w...

e If Part (1) holds, this minimizer is unique. Part (2) reduces to wi € Seq(€phys)

e Recall in ATE-definition we require wi € Seq(B+P) C Seq(Cphys)
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Constrained Approach to Equilibrium

Constrained Approach to Equilibrium
The pair (w, ) has the property of the Constrained Approach to Equilibrium if

(1) St(w,®) ={w+}

(2) wi € Seq(Cphys) and s(w+) = s(w) + inf pes.q(€pnys) S(W]p) with unique minimizer w...
Interpretation of (2): The system relaxes to a state of maximal entropy compatible with constant of motions.
Also, by Quantum Stein lemma: Among all states in Seq(€pnys), wy is the least distinguishable from w.

e Assume R-Conjecture. Then wi € Seq(€phys) C Seq(Creg), S0 the variational char. of Seq(Creg) holds.

Thus s(w+) = s(w) + inf pes.q (€pnye) S(W]P) with minimizer w...

e If Part (1) holds, this minimizer is unique. Part (2) reduces to wi € Seq(€phys)
e Recall in ATE-definition we require wy € Seq(B+P) C Seq(Cpnys)
Assume as in ATE-theorem that wi € Seq(W+) with W € Byq and Ey, € €. Then wi € Seq(Cphys)-

Key question now: what conditions ensure Ey, € €7
22



Quantum Stein Lemma

Let p,o € Stand A € F.

Ho: the system is in state p
Hy: the system is in state o @ 0
AN

Type | error = P(we guessed p | true state is o) true state @ TA
tr(oaTo) =: aa,T,
(
(

uesses

Type Il error =P

9
~ \
] Ta = {To, T2} 1
we guessed o | true state is p)

To+T; = 1y

tr(paT1) =: B,
Fix € small. We pick optimal T to minimize Type Il error while keeping Type | error under control:

Ba = infr, {81, | a1, < €}
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Quantum Stein Lemma

Let p,oc € St and A € F.
Ho: the system is in state p
Hy: the system is in state o @ 0
T | = [P d i N
ype | error = P(we guessed p | true state is o) true state TA g
=tr(oaTo) =: aa,T, il T T, T2l
A = {To, Th
Type Il error = P(we guessed o | true state is p)
= tr(

To+T; = 1y
tr(paT1) =: Ba, 1,

uesses

Fix € small. We pick optimal T to minimize Type Il error while keeping Type | error under control:

Ba = infr, {81, | a1, < €}
Brre N with k= —limpza 7 log B

Quantum Stein Lemma: k = s(p|o) i.e. Ba ~ e~ Nselo)
QSL gives the operational meaning of specific relative entropy as the optimal asymptotic exponential

decay rate of Type Il error with Type | error fixed (asymmetric hypothesis testing).
23



Quantum Stein Lemma

Theorem

Assume that for some § > 0 the following limit exists and is finite for s € [0,1 + 4]:

e(s)

= /{i&nd ﬁ log tra(appr °).

Also, assume that the function e is continuous on [0, 1 + ¢], differentiable on (0, 1], and D"e(0) < &(1).
Then the Quantum Stein Lemma holds for (o, p).

Let ®,W € Br and p € Seq(P), 0 € Seq(V).
e If d =1, then QSL holds for (o, p) iff ®, W are not equivalent
e If d > 1, then QSL holds for (o, p) iff ®, W are not equivalent and both ||®||s and ||W||s are small enough

Interpretation of Constrained Approach to Equilibrium via Quantum Stein Lemma

Assume the Quantum Stein Lemma holds for all pairs (w, ), v € Seq(€phys)-
Among all equilibrium states in Seq(€phys), w4 is the least distinguishable from w.
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Key question now:
Suppose that wi € Seq(W+) with W € Bsq. How can we ensure that Ey, € €7

Next:
e Structural theory of Constants of Motion:
e What assures Ey, € €? Conjecture SD and Conjecture R+SE
e Additional Conjecture SD+ to characterize € (useful for trivial admissibility later on)
e Conservation Laws:
e basic CLs for specific entropy and energy (recall they have been assumed all the time)

e additional CLs as partial solutions to Conjectures

Mini-Dictionary:
e SD stands for surface-dynamics
e SD+ for surface dynamics plus something else
o R for regularity
e SE for specific (relative) entropy

25!



Constants of Motion

e Aim: find natural conditions on (®, W) under which Ey € ¢(ao)
e Optimally: find characterization of €(ao)

e There's going to be two parts:

1. Conditions related to surface energies and commuting dynamics

2. Conditions related to regularity and specific relative entropy

26



Characterization of ¢ via Commuting Dynamics: Motivation

Consider wy € S (w, P) N Seq(V4) with W € Byg. Then

e w, is a KMS state for s — oy,

® w, is ae-invariant, so a KMS state for s — g ‘0 oy, © ag for any fixed t € R.
Shared KMS state = the two dynamics coincide:
as‘oay, cap =ay, VtseR
That is, aw, is preserved by ao.

Does g 0 oy, = oy, © g imply that Ey, € €7 Are those two equivalent?

27



Characterization of ¢ via Commuting Dynamics: SD property

Let &, ¥ € Byq. Fix t € R and for each A € F consider a dressed Hamiltonian:
H:(A) := e oW Hy (N)e ™™ = o (Hu(A)).

e Generated dynamics: s — agoaf o ag

e Surface energies: W;(A) = limprqza[He(A) — He(A) — He(A\ A)]

e The corresponding translation-inv. interaction W, is uniquely defined as (but it need not be even in By!)

W, (N) = ZXCA(—UW*‘X‘Ht(X)

SD property
We say (@, W) has the SD property if W;(A) exists for all A € F, and |im/\Tzd|1T‘Wt(/\) =0, for |t| < e.

Theorem Jaksi¢, Pillet, S, Tauber '25
Let (¢, V) with SD property. Then a0 a3, = o oy = Ey € €.

Conjecture SD: For any ®, W € Bgyq, the pair (¥, V) has SD property.
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Characterization of ¢ via Commuting Dynamics: SD+ Property

Theorem Jaksié, Pillet, S, Tauber '25
Let ®, W € Bsa. Then Ey € € and W, € Byq for |t| < e = af oay = af o ab.
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Characterization of ¢ via Commuting Dynamics: SD+ Property

Theorem Jaksié, Pillet, S, Tauber '25

Let ®, W € Bsa. Then Ey € € and W, € Byq for |t| < e = af oay = af o ab.

If the pair (®, W) has SD property, for each |t| < € we can define the derivation §; on Ui,c by
0t (A) = i[He(N), Al + i[W:(N), A, A € Up.
SD+ property
We say (¥, W) has SD+ property if it has SD property and in addition the following holds for |t| < e:
o (i d¢)Uoc is dense in U
o limpyza 7 lae (Hu(A)) — ao a(Hu(A))]| = 0

Theorem Jaksié, Pillet, S, Tauber '25

Let , W € Bsq with SD+ property. Then Ey € € <= af 0 a3y = iy © .
Conjecture SD+: For any &, W € Byq, the pair (¢, V) has SD+ property.
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Characterization of ¢ via relative entropy

Fix ® € Bsq. Recall we assume conservation of specific entropy: s(po a) = s(p) for all p € S1, t € R.
Proposition
Let W € Bsq and w € Seq(V). Assume that (w, V) is regular. Then

VtER Vpe S s(poaslw) =s(plw) <= Evc€

Proof is immediate:
s(plw) = —s(p) +  p(Ev) + P(V)

s(poaslw) = —s(poas) + (po as)(Ev) + P(V)

Conjecture R+SE: Conjecture R holds and for any ®, W € Byg and w € Seq(V) we have
VteR Vpe St s(poaslw) = s(plw)
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Characterization of ¢ via relative entropy

Fix ® € Bsq. Recall we assume conservation of specific entropy: s(po a) = s(p) for all p € S1, t € R.
Proposition
Let W € Bsq and w € Seq(V). Assume that (w, V) is regular. Then

VtER Vpe S s(poaslw) =s(plw) <= Evc€

Proof is immediate:
s(plw) ==s(p) + p(Bv) + P(V)

s(po aslw) = —s(poas) + (po as)(Ew) + P(V)

Conjecture R+SE: Conjecture R holds and for any ®, W € Byq and w € Seq(V) we have
VteR Vpe St s(poaslw) = s(plw)

e We have seen various properties of (®, W) that assure Ey € €(ao)
o Conjectures say: All reasonable/physical ( = Bsa) interactions have these properties

e Conjectures concern structural properties of QSS, in particular they have nothing to do with time — oo
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Back to Approach to Thermal Equilibrium

Let w € St and ¢ € Bygy.

Theorem Jaksic, Pillet, S, Tauber '25
Assume that Seq(8:«P) = {Veq} with (Veq, B+ P) regular, and that w is admissible for veq.
For wy € Sy(w, ®), the following statements are equivalent:

(1) wt = veq

(2) wi € Seq(Wy) with W € Byq such that (wy, W) is regular, and Ey, € €.

e Recall W € Byq is a minimal physicality requirement.

o If Conjecture R holds, then (w4, W) is regular.

o If either Conjecture SD or Conjecture R+SE holds, then Ey, € C.
Thus, assuming the conjectures and a physically relevant setting, Approach to Thermal Equilibrium follows!
Key questions now:

e When do these conjectures hold (if at all...)?

e What about SD+7?
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(Spoiler) Why SD+7? Non-integrable systems

Let w € St and ¢ € Byg.
Theorem Jaksic, Pillet, S, Tauber '25
Assume Seq(5+P) = {veq} with (Veq, B+P) regular, and Eo is the unique constant of motion (up to ~).

Let w; € Sy (w, P) and assume that wy € Seq(V) with W € Byq and Ey, € C.
Then wy = Veq.
e Regularity of (ws, W) is not required! Price to pay: we must verify there are no additional
constants of motion. This is where the characterization of € via Property SD+ intervenes.

e There's new results started by [Shiraishi’19] proving the non-integrability (~ unique constant of motion)
of a large class of 1D-models, also extended recently to higher dimensions.

e Using SD+ property, we can connect our setting with these results. More on Friday.
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Conservation Laws
(& partial solutions to Conjectures)

e Basic conservation laws: specific entropy and energy

e Conjectures via conservation laws for various properties
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Basic Conservation Laws

B ={®:|¢], <oco} with [, = Zxaoe'(‘xl_l)HCD(X)H and r >0

BYe = {& ¢ [0S < oo} with [[@]|F*™ = 3 [X|[diam(X)]"[|®(X)[| and v >0

e Both B" and Bi}ia’“ are Banach spaces and By is a dense subset of each
e 3" with r > 0 and Bgiam with v > d are subsets of Bsq ([Bratelli-Robinson] and [Bru-Pedra], respectively)

° Bs“‘m and B" are incomparable

Theorem: Basic Conservation Laws
Let ® € B" with r > 0, or & € B*™ with v > 2d. Then
s(woag) = s(w), woas(Es)=w(Ey) VteR Yw € Si
Entropy in B" [Lanford-Robinson’68], Energy in B" [Jaksi¢-Pillet-Tauber’24], both in B:ia’“ [Jaksi¢-Pillet-S-Tauber’25]
e For B', the proofs of CL for energy and entropy are completely different

e For Bi}i‘”‘m, the Lieb—Robinson bound provides the common framework for both CLs
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Lieb—Robinson bound

Theorem [Nachtergaele-Sims-Young'19]
Let ® € BS*™ with v > d, and 0 < € < v — d. Then:
e Dynamics ag exists

e Lieb-Robinson bound: Let t € R, Ag C A, and A € Up,.-

3e: >0 [las(A) — aba(A)]l < cellAll[Ao] (1 + dist(Ag, 2 \ A)) 07979

Proving the conservation of specific entropy via the Lieb—Robinson bound has been suggested by Wreszinski:

o W. F. Wreszinski: Irreversibility, the time arrow and a dynamical proof of the second law of thermodynamics.
Quantum Stud.: Math. Found. 7 (2020)

e W. F. Wreszinski: The second law of thermodynamics as a deterministic theorem for quantum spin systems.
Rev. Math. Phys. 35 (2023)
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CLs for energy in BJ*™: sketch of the proof 1/3

For A € F:
(90 @A) (HA(®)) = p(e N Hy (@) M) = p(Hn(0)),
which giv
e fim, (9 ) (Hh(®)) = lim i p(Hh(®) = (Eo).
On th her hand,
e otherhe lim 4 (p 0 a4) (HA(®)) = (p o ab)(Es).

AZd

Proposition
Let ® € BS™™ with v > 2d. Then

Vpe S VteR AliTrgdﬁl(p o ag)(HA(®)) — (p o ae a)(HA(®))| =0
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CLs for energy in BJ*™: sketch of the proof 1/3

For A € F:
(p 0 @i 2)(HA(®)) = p( ™ P Hp(®)e ™M) = p(Hp(9)),
which gives

lim ﬁ(p o Oértp,/\)(H/\(q))) =

Atz L ﬁp(H/\(d))) = p(Eo).

On the other hand, .
lim - (p 0 @6)(HA(®)) = (p 0 ab)(Eo).

AMZ

Proposition
Let ® € BS™™ with v > 2d. Then

Vpe S VteR AliTrgdﬁl(p o ag)(HA(®)) — (p o ae a)(HA(®))| =0

|(p o a6) (HA(®)) — (p 0 c6,2) (HA(P))] = [p (6 (HA(®)) — co a(HA(D))) |
< [las (HA(®)) — s a(HA(®))]

= It suffices to show Vt € R limpza 37 [ (HA(®P)) — a6 A(HA(®))]| = 0
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CLs for energy in BJ*™: sketch of the proof 2/3

Proposition
Let ® € BS™™ with v > 2d. Then

VteR lim % [|ao (HA(®)) — o A(HA(®))]| = 0.
A1Zd

Let A be a cube and Ag a sub-cube. Define Fp a, () := Ha(®) — Hao (D).
lae (HA(®)) — s, (HA(®))]]

< oo (Hao (@) —aoa(Hao (®)) 1+ llao(Anne (9)) |+ llae,n (Arno (#))]]
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CLs for energy in BJ*™: sketch of the proof 2/3

Proposition
Let ® € BS™™ with v > 2d. Then

VteR lim % [|ao (HA(®)) — o A(HA(®))]| = 0.
A1Zd

Let A be a cube and Ag a sub-cube. Define Fp a, () := Ha(®) — Hao (D).
lae (HA(®)) — s, (HA(®))]]

< o (Hao(®)) —ao a(Hao ()l + 2 [ Anne (P)l]
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CLs for energy in BJ*™: sketch of the proof 2/3

Proposition
Let ® € BS™™ with v > 2d. Then

VEER  lim prllas(Ha(®)) — awa(Fa(®))]] = 0.
Let A be a cube and Ag a sub-cube. Define Fp a, () := Ha(®) — Hao (D).
llevo (HA(®)) — o A(HA(®))]]
< Jlao(Hao (®)) = a(Hno (®)| + 2 [|Arno ()]

< [[Hao (®)]] et |Aol(1 + dist(Ao, Z9\ A)) 7T+ 2 ||Anag (@)l (Lieb-Robinson bound)
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CLs for energy in BJ*™: sketch of the proof 2/3

Proposition
Let ® € BS™™ with v > 2d. Then

VteR lim % [|ao (HA(®)) — o A(HA(®))]| = 0.
A1Zd

Let A be a cube and Ag a sub-cube. Define Fp a, () := Ha(®) — Hao (D).

lae (HA(®)) — s, (HA(®))]]

< [lad(Ho (9)) = a(Hao (Pl + 2 [|Arno ()
< [[Hao (®)]] et |Aol(1 + dist(Ao, Z9\ A)) 7T+ 2 ||Anag (@)l (Lieb-Robinson bound)
< ol [[®[ls celMo|(1 + dist(Ao, Z7 \ A)) 77 4+ [A\ Aol |5

(because [[Hag (P)[| < Xxrng0 P < 1Mol x50 P < [Nall|ls)
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CLs for energy in BJ*™: sketch of the proof 2/3

Proposition
Let ® € BS™™ with v > 2d. Then

VteR lim & [|aw (HA(®)) — ao A(HA(®))]| = 0.
A1Z4

Let A be a cube and Ag a sub-cube. Define Fp a, () := Ha(P) — Hao (D).

i llae (HA(®)) — ao a(HA(®))

< il (Ho (9)) = a(Hao (®))1] + 127 [1Arne ()]
<l Hno (D)1l e [Ao] (1 + dist(Ao, Z7 \ A)) ™74 4 2| A ng (0] (Lieb-Robinson bound)
< ol |0]], ¢ [Aof(1 + dist(Ao, 29 \ A)) 77T 4 1NVl oo
\/ ~——
—1 —0 —0
(because ||Hpo (P)I| < X xangz0 [P < A0l x50 IPX)] < [Aall[®]ls)
Can we construct families A, Ao such that limy,z4 ... = 07
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CLs for energy in BJ™: sketch of the proof 3/3

Lemma.
Assume v > 2d. Let A be a family of cubes such that A 1 Z¢ and denote the side of A by La.

There exists p € (0,1) such that the sub-cubes Ag = (1 — L, ”)A satisfy
(i)

(i) lim |Ao|(1 + dist(Ao, Z* \ A)) ¥ = 0 for any 0 < € < 7 — 2d.
MZ

MAo| _ g

m A g

|
A1Zd

(i) Since [Ao| = (1 — Ly?)?Lg and dist(Ao, Z% \ A) = L+, we obtain
Aol (1 + dist(Ag, Z¢ \ A))~7Hdte < [d-(=PNY=d=e)

It follows that d < (1 — p)(y —d —€) if 0 < p < po with po := 2=29=< 50 (ii) holds
~y—d—e

= CL for specific energy holds for & € BI*™ with v > 2d
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By-product: Precious Proposition

Proposition
Let ® € BS™™ with v > 2d. Then

VeeR  lim dflab(Ha(®)) — ab a(HA(®))] = 0.
A1Zd

Precious Proposition
Let ® € B with v > 2d and W € B;. Then

vVt e R lim & [law (HA(W)) — ao a(HA(W))]| = O.
A1Zd

e As we have just seen, it is needed for CL for specific energy (with W = ®)
e Recall this is one of the conditions defining the SD+ property

e |t also intervenes in the partial solution to Conjecture SD
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Conjecture SD

Let &, Vg € Byg. Fix t € R and define for A € F
Ht(/\) = e*ithb(/\) H\IJO (A)eith(A).

e Generates dynamics s — g o ay, o ag
e The corresponding translation-inv. interaction W, is uniquely defined but it need not be even in By,

e But its pressure and specific energy exist and can be easily computed

Partial solution to Conjecture SD [Jaksic-Pillet—S—Tauber'25]
Let ® € BY™™ for v > 2d and Wo € B for o/ > d. Then (®,Wo) has SD property for all t € R, i.e.

Wi (N) exists for all A € F and lim 1x- Wi(A) = 0
/\TZ‘”M

Key tool in the proof is the Lieb-Robinson bound via Precious Proposition
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Conjecture SD+

Refresher on SD+ property
We say (P, Vo) has SD+ property if it has SD property and in addition the following holds for |t| < e:
(1) (i= 0¢)Uoc is dense in U, where §:(A) = i[H:(A) + We(N), A] for A € Un.

(2) “mmzdﬁ”afn(""%(/\)) - afv.,/\(H‘Uo(A))H =0

e SD property and Part (2) hold for & € B3 for v > 2d and W € Bjéa“‘ for v > d.

e Part (1) is much harder, we only know it holds for pairs of finite-range interactions:

Partial solution to Conjecture SD+ [Jaksic-Pillet—S—Tauber’25]
Let &, Wy € Bs. Then (®, Vo) has SD+ property (so the characterization of € via commuting dynamics holds)

Proof idea: We follow Bru-Pedra’s proof that (i & 6y ) Uiec is dense in U for W € Bd@™ with > d, but
we need to generalize the Lieb-Robinson bound to the case of the composite dynamics generated by d¢, i.e.

instead of [[(ag, —ay A)(A)| < ... weneed (o —aj)(A)| <... where o = a(;t o oy, © ol
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How to tackle Conjecture R+SE

CL for relative entropy = Property SE
Let Wy € Bsg and w € Seq(Wo) such that (w, W) regular. Recall that SE property means

s(p|w) =s(poas|w) VteR VYpe St

Assume CL for relative entropy: s(p|w) =s(poal|woal) VEeR Vpe S

If wis ae-invariant, we recover SE property
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How to tackle Conjecture R+SE

CL for relative entropy = Property SE
Let Wy € Bsg and w € Seq(Wo) such that (w, W) regular. Recall that SE property means

s(p|w) =s(poas|w) VteR VYpe St
Assume CL for relative entropy: s(p|w) =s(poal|woal) VEeR Vpe S
If wis ae-invariant, we recover SE property

CL for regularity = CL for relative entropy
Assume CL for regularity: (w, Vo) regular = (w o ag, W) regular
We check that Py, = Py, and Ey, = ag ‘(Ew,)- Thus (po ag)(Ev,) = (po ab)(ag (Eve)) = p(Ev,), so

s(plw) = —s(p) + p(Ewy) + Py,
= —s(poas)+ (poas)(Ev,) + Pu, = s(poas |woas)
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How to tackle Conjecture R+SE

CL for relative entropy = Property SE
Let Wy € Bsg and w € Seq(Wo) such that (w, W) regular. Recall that SE property means

s(p|w) =s(poas|w) VteR VYpe St
Assume CL for relative entropy: s(p|w) =s(poal|woal) VEeR Vpe S
If wis ae-invariant, we recover SE property

CL for regularity = CL for relative entropy
Assume CL for regularity: (w, Vo) regular = (w o ag, W) regular
We check that Py, = Py, and Ey, = ag ‘(Ew,)- Thus (po ag)(Ev,) = (po ab)(ag (Eve)) = p(Ev,), so

s(plw) = —s(p) + p(Ewy) + Py,
= —s(poas)+ (poas)(Ev,) + Pu, = s(poas |woas)

CL for regularity = CL for relative entropy = Property SE for ae-inv. w
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CL for weak Gibbsianity

Definition of weak Gibbsianity [Jaksic—Pillet—Tauber'24]
We call w € St weak Gibbs for W € By, if there exist a family of constants Cy > 0 such that
—Ha (V) —Hp (V)
- <wp < © and lim log C =0

N e @ SNS pem® Ty

e We denote Sy (V) := set of weak Gibbs states for W
e wE S (V) = (w,V)is regular = w € Seq(V)
CL for weak Gibbsianity [Jaksi¢—Pillet—-S—Tauber'25]
Assume that ® € B and either
(a) d >1 and Wy € B* for some r > 0 and such that ||Wo]|, < r, or
(b) d =1 and Vg € Bs.
Then w € Sye(Vo) = wo af € Swe(V:) for || small enough. In Case (b) this holds for all ¢t € R.
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CL for weak Gibbsianity
[Jaksi¢—Pillet—Tauber'24]

Definition of weak Gibbsianity
We call w € St weak Gibbs for W € By, if there exist a family of constants Cy > 0 such that

—Ha (V) —Hp (V)
_1 € e log Cn
N oA S S O and lim =T =0

e We denote Sy (V) := set of weak Gibbs states for W

e wE S (V) = (w,V)is regular = w € Seq(V)
CL for weak Gibbsianity [Jaksi¢—Pillet—-S—Tauber'25]

Assume that ® € B¢ and either
(a) d >1 and Wy € B* for some r > 0 and such that ||Wo]|, < r, or

(b) d =1 and Vg € Bs.
Then w € Sye(Vo) = wo af € Swe(V:) for || small enough. In Case (b) this holds for all ¢t € R.

Recall Thm: If Wy € B™ with ||Wo||; < r, or Wg € B¢ in d =1, then

w € Seq(Vo) < (w, Vo) regular & w € Syg(Wo) [Jaksi¢-Pillet-Tauber'24]

Hence, in this context: CL for weak Gibbsianity = CL for regularity, and Conjecture R holds!
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Partial solution to Conjecture R+SE

CL for weak Gibbsianity = CL for regularity = CL for relative entropy = Property SE for ae-inv. w

CL for relative entropy [Jaksi¢—Pillet—-S—Tauber'25]

Under the same assumptions as CL for weak Gibbsianity:
Vp € St s(p|w) =s(poas|woas) for |t| < To (in dim one To = c0)
If in addition w is ap-invariant, one can take To = 0. (Because then wo al = w € Syg(Wo) for all t € R.)

Partial solution to Conjecture R+SE [Jaksié—Pillet—S—Tauber’25]

Conjecture R+SE holds under the same assumptions as CL for weak Gibbsianity, provided that w is af-inv

CL for regularity/weak Gibbsianity = CL for relative entropy = Conjecture R+SE

(small time) (small time) (all times for ag-invariant state w)

Recall we apply R+SE to wi € Sy (w,®), which is ag-invariant!
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State of the art for Conjectures

Basic CLs for specific energy and entropy
Hold for either

(a) ® € B" with r >0, or

(b) ® € BY=™ with v > 2d.

Conjecture SD
Holds for ® € BS™™ with v > 2d and W € BJ*™ with v/ > d.

Conjecture SD+
Holds for &, ¥ € B;.

Conjecture R+SE

Holds for ® € B¢ and either

(a) d > 1 and W € B* for some r > 0 and such that ||V, < r, or
(b) d =1 and V¥ € Bs.

and when w is ag-invariant.
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CL for weak Gibbsianity: proof overview

We work under the assumptions for CL for weak Gibbsianity. We denote w: := w o af

Characterization of weak Gibbsianity [Jaksic—Pillet—Tauber'24]
we € Swe(V < lim—log inf ——~*———~=1I|im—log sup —————~ =0
¢ € Sws(Ve) ATITAT '8 A () i )~ BTN B 8 o)y ()
A>0 A>0
Key bound [Lenci-Rey-Bellet'05]
For any A € Up such that A >0
i A i
exp(— [ We (M)l = [l (We(AD)]) < A < e[ + o (W)

(we)—wi(n)(A)

Recall the SD property holds: limyza a7 [[We(A)[| =0Vt € R

We need to show I|m AT L1a"/2(W,(N))|| = 0 and I|m V\\ |2 weny(We(N))[| =0 (at least for small time)
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CL for weak Gibbsianity: Ruelle’s bound

Ruelle’s bound (’69)
Let A € Uioc and W € B". The map R 3 s — ay(A) € U extends analytically to the strip |Im z| <

2\|“’H
For any z in this strip [Ja%(A)| < ||Alle"**PPAIC, v with C, v = (1 — 211w [Imz])~!
o (A)]| = [lads, 0 aa(A)]
t e (in)”
ae(A) = Z o Z [P(Yh) ... [®(Y2), [@(Y2), Alll Baker-Campbell-Hausdorff Formula
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CL for weak Gibbsianity: Ruelle’s bound

Ruelle’s bound (’69)

Let A € lUhoc and W € B". The map R 5 s — aj,(A) € U extends analytically to the strip |Im z| < z-.

For any z in this strip [Ja%(A)| < ||Alle"**PPAIC, v with C, v = (1 — 211w [Imz])~!
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CL for weak Gibbsianity: Ruelle’s bound

Ruelle’s bound (’69)

Let A € lUhoc and W € B". The map R 5 s — aj,(A) € U extends analytically to the strip |Im z| < z-.

For any z in this strip [Ja%(A)| < ||Alle"**PPAIC, v with C, v = (1 — 211w [Imz])~!
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chained to A a7



CL for weak Gibbsianity: Ruelle’s bound

Ruelle’s bound (’69)

Let A € lUhoc and W € B". The map R 5 s — aj,(A) € U extends analytically to the strip |Im z| < z-.

For any z in this strip [Ja%(A)| < ||Alle"**PPAIC, v with C, v = (1 — 211w [Imz])~!

o]
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n=0 " (Y1,..,Yn)
chained to A

o (Al = llod, © aa(A)

8

Z Ao [P(Yn) ... [®(Y2), [®( Y1), All] Baker-Campbell-Hausdorff Formula

n=0 T (Ya,..,Yn)
chained to A a7



CL for weak Gibbsianity: Ruelle’s bound

Ruelle’s bound (’69)

Let A € lUhoc and W € B". The map R 5 s — aj,(A) € U extends analytically to the strip |Im z| < z-.

For any z in this strip [Ja%(A)| < ||Alle"**PPAIC, v with C, v = (1 — 211w [Imz])~!
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CL for weak Gibbsianity: Ruelle’s bound

Ruelle’s bound (’69)

Let A € lUhoc and W € B". The map R 5 s — aj,(A) € U extends analytically to the strip |Im z| < z-.

For any z in this strip [Ja%(A)| < ||Alle"**PPAIC, v with C, v = (1 — 211w [Imz])~!

o (A)|| = [laf, © ab(A) > Jede[@(Ya) .. [(Y2), [®(Y2), Alll|  / bound the commutator
=0 " (Y1,...,Yn)
chained to A

. — (2]t])" T :
< |ed, (Al Z % Z H |, (P(Y))]] / use Ruelle’s bound for Wo
n=0 (Y1,...,Ys) i=1
chained to A
g (OCYDI < IOl Corvg < 1O(Y:) ]l C, Ruelle’s bound & ® € By
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CL for weak Gibbsianity: Ruelle’s bound

Ruelle’s bound (’69)

Let A € lUhoc and W € B". The map R 5 s — aj,(A) € U extends analytically to the strip |Im z| < z-.

For any z in this strip [Ja%(A)| < ||Alle"**PPAIC, v with C, v = (1 — 211w [Imz])~!

o (A)|| = [laf, © ab(A) > Jede[@(Ya) .. [(Y2), [®(Y2), Alll|  / bound the commutator
n=0 " (Y1,..,Yn)
chained to A
< |ladp (A) || Z w Z H [l (D(Y7))]] / use Ruelle’s bound for Wo
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chained to A
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CL for weak Gibbsianity: Ruelle’s bound

Ruelle’s bound (’69)

Let A € lUhoc and W € B". The map R 5 s — aj,(A) € U extends analytically to the strip |Im z| < z-.

For any z in this strip [Ja%(A)| < ||Alle"**PPAIC, v with C, v = (1 — 211w [Imz])~!

o (A)|| = [laf, © ab(A) > Jede[@(Ya) .. [(Y2), [®(Y2), Alll|  / bound the commutator
=0 " (Y1,...,Yn)
chained to A
o0 2 t n n
< oy (A) | Z % Z H [l (D(Y7))]] / use Ruelle’s bound for Wo
n=0 : (Y1,...,Y,) i=1

chained to A

rleu 2 t r(ranged)) G, n W
< Coug || Alle"=uPPA Z [tle Vo) Z H |®(Y7)|| / Ruelle’s lemma
i=1

n!
n=0 (Ya,.., Yn) i=
chained to A

Vio>1 Z H DY) < n'e"s"ppA‘( |®l)" Ruelle’s lemma
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CL for weak Gibbsianity: Ruelle’s bound

Ruelle’s bound (’69)

Let A € lUhoc and W € B". The map R 5 s — aj,(A) € U extends analytically to the strip |Im z| < z-.

For any z in this strip [Ja%(A)| < ||Alle"**PPAIC, v with C, v = (1 — 211w [Imz])~!

o (A)|| = [laf, © ab(A) > Jede[@(Ya) .. [(Y2), [®(Y2), Alll|  / bound the commutator
=0 " (Y1,...,Yn)
chained to A
o0 2 t n n
< oy (A) | Z % Z H [l (D(Y7))]] / use Ruelle’s bound for Wo
n=0 : (Y1,...,Y,) i=1

chained to A

2 t r(ranged)) G, n W
< Coglaferer 3 (It vl S Tl
i=1

n!
n=0 (Ya,.., Yn) i=
chained to A

< Cowo Al PA(1 — [t/ To) ™ with To = (2[0[],e "5 C, 0,) 7

Vo>1 Z H DY) < n'e"s"ppA‘( |®l-)" Ruelle’s lemma

(Y1,...,Yp) i=1
chained to A 47



CL for weak Gibbsianity: Ruelle’s bound vs. perturbed dynamics

Perturbed dynamics is much more problematic. Note that o (;)(A) = a7, © @A (A).

A Z\ A

If we applied the previous result:
loza\a(eA(AN < cellon(A)]l exp(2risupp ai(A)]) < ctllaa(A)|| exp(2r(suppA U A|)
Instead of exp(|suppA U A|) we should see

exp(|(suppAUA) N (27 \ A)]) < exp([suppAl)

Conclusion

g a ’ 0 0 s _ _—t s t d
We need a generalization of Ruelle’s bound for restricted dynamics aj = Qg © Mg © Qo[ Kcze.
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CL for weak Gibbsianity: Ruelle’s bound generalized

d —
Let K C Z9 and A € Uioc. Recall that aj = aq)‘tK 0 Ay © ag,lK.

Ruelle’s bound generalized [Jaksic—Pillet—-S—Tauber'25]
Assume W € B". The map
R > s — oy, (A) €U

has an analytic extension to the strip |Im z| < For any z in this strip

_r_
2[[wilr -

o, (A < | A]l exp(rlsuppAN K)Cow - with Cow = (1 = 2[[ W[ Im2])~".
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CL for weak Gibbsianity: Ruelle’s bound generalized

d —
Let K C Z9 and A € Uioc. Recall that aj = ozq)‘tK 0 Ay © ag,lK.

Ruelle’s bound generalized [Jaksic—Pillet—-S—Tauber'25]
Assume W € B". The map
R > s — oy, (A) €U

has an analytic extension to the strip |Im z| < For any z in this strip

_r_
2[[wilr -

o, (A < | A]l exp(rlsuppAN K)Cow - with Cow = (1 = 2[[ W[ Im2])~".

Ruelle’s bound for composite dynamics [Jaksic—Pillet—S—Tauber’'25]
Assume Vo € B* such that ||Wol|, < r and ® € B;. Set R = range® and To = (%HCDH,CZ’%e’Rd)_l.

For all |t| < To the map
R > s — ax(A)

has an analytic extension to the strip |Imz| < . For any z in this strip

2||‘Uro|\r
laic(A)l| < [|All exp(2r|suppA N K|) Cowo (1 — |t/ To) "
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CL for weak Gibbsianity: Araki’s bound in dim =1

Let W € Bf and A € Uiy.. Define

R
[Fl(2) = exp<(n —R+1)x+2 Z %) with R :=rangeV

r=1

Araki’s bound ('69)

The map R 3 s — a3, (A) has an analytic extension to the whole complex plane, and for any z € C

e (Al < Fa(Culz])IIAll,

where n = max{diam(suppA),R — 1} and Gy = 2(R + 1)||V||s
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CL for weak Gibbsianity: Araki’s bound in dim =1

Let W € Bf and A € Uiy.. Define

R
[Fl(2) = exp<(n —R+1)x+2 Z %) with R :=rangeV

r=1

Araki’s bound ('69)

The map R 3 s+ ay,(A) has an analytic extension to the whole complex plane, and for any z € C
P

e (Al < Fa(Culz)IIA]l,
where n = max{diam(suppA),R — 1} and Gy = 2(R + 1)||V||s

Araki’s bound generalized [Jaksié—Pillet—S—Tauber’25]
Let KC Z. Then R 5 s+ ay,, (A) has an analytic extension to the whole complex plane and for any z €C

llodi), (Al < Fa(Culz))[|Al,

where n = max{diam(suppAN K),R — 1} and Cy = 2(R + 1)||V||s
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CL for weak Gibbsianity: proof recap

Characterization & Key bound [Jaksi¢—Pillet—Tauber’24] & [Lenci—Rey-Bellet’05]
For any A € Uj such that A >0

—H IV = & ll02 oy (We(ADI] < 4 Tog < EIWN)] + Al 2 (WA

Then we € Swe(W:) if both bounds go to zero as A 1 Z7.
e We know the SD property holds: lim ﬁHWt(A)H =0,
INVZ

e Using Ruelle/Araki generalized bounds for composite dynamics we get

lim lla*(We(A) | =0 and  lim 2rlla5, ( (Wa(A))]| =0.

CL for weak Gibbsianity holds

wt € Swe(V:) for

(a) |t] < To if W € B with ||W]|, < r, and ® € B; (Ruelle’s bound)
(b) teRifd=1and W,d c Br (Araki's abound)
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Back to Approach to Thermal Equilibrium

Let w € St and ¢ € Bygy.

Theorem Jaksic, Pillet, S, Tauber '25
Assume that Seq(8:«P) = {Veq} with (Veq, B+ P) regular, and that w is admissible for veq.
For wy € Sy(w, ®), the following statements are equivalent:

(1) wt = veq

(2) wi € Seq(Wy) with W € Byq such that (wy, W) is regular, and Ey, € €.

e Recall W € Byq is a minimal physicality requirement.

o If Conjecture R holds, then (w4, W) is regular.

o If either Conjecture SD or Conjecture R+SE holds, then Ey, € C.
Thus, assuming the conjectures and a physically relevant setting, Approach to Thermal Equilibrium follows!
Key questions now:

e When do these conjectures hold (if at all...)?

e What about SD+7?
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ATE in non-integrable systems




ATE in non-integrable systems

Let w € St and ¢ € Bggy.
Theorem Jaksic, Pillet, S, Tauber '25
Assume Seq(+P) = {veq} with (Veq, B+«P) regular, and Eo is the unique constant of motion (up to ~).

Let wy € Sy(w, P) and assume that wi € Seq(W4) with Wy € Byg and Ey, € €. Then wy = veq.

e Recent results proving that non-integrability, i.e., unique constant of motion, is generic for a large class
of models: [Shiraishi'19], [Chiba’24], [Yamaguchi, Chiba, Shiraishi'24], [Chiba'25], [Shiraishi, Tasaki'25] & more

e Characterization of € via Property SD+ allows us to connect with these results and prove that the
mixed-field Ising chain has a unique constant of motion.

Plan of the last talk
1. JS proof strategy & results for the Ising chain
2. Connecting the two setups & adapting the proof

3. Summary of JS results for other models
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Overview of JS method
& results for Ising chain




JS-Constants of Motion

e Consider Ag = {1,--- , N} with periodic boundary condition. For S C Ag set D(S) = max; jes |i — j|per

e To each site i € Ao attach H; = C?, then Ha, = ®icn,Hi and Un, = bounded operators on Ha,

e Xi, Y, Z; denote the elements of U, acting as the usual Pauli matrices on site i and as I elsewhere.
We consider Hamiltonians of the form

N N
H = (IXiXis1 + Iy ViV + JzZiZia) + > _(hxX; + hy Yi + hz Z),

i=1 i=1

where Jx, Jy, Jz, hx, hy, hz are real constants independent of i, and N + 1 is identified with 1.

Definition: JS-Constants of Motion
We say that Q € Up, is a JS-Constant of Motion (JS-CM) if [H, Q] = 0.

Examples: T and H and all (linear combinations of) spectral projections of H.
To get physically relevant results we introduce a locality requirement on JS-CM.
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Locality requirement on JS-CM

We denote by Ph, the set of all strings of Pauli basis matrices acting on Ao:

N
P, = {A =) A where A € {X, Y;,Zu]l}}

i=1
Pho is a basis of Up,. For A € Pp, we define suppA = {i € Ao | A; # I} and

the diameter/length of A as D(A) = D(suppA) (respecting periodicity!)

£-supported observable
For ¢ € N we say that Q € Uy, is £-supported if Q = Z gaA, and ga # 0 for some A with D(A) = ¢.

AEP)
D(A)<t

We are interested in ¢-supported JS-CM’s. Examples: H is a 2-supported JS-CM, T is 0-supported.
We call a JS-CM local if it is ¢-supported with £ < N/2.
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JS results for Mixed-field Ising chain

Let Jz # 0 and consider the Hamiltonian

N N
H= Z JzZ; 71 + Z(hXXi + hzZ;).

i=1 i=1

JS-non-integrability of mixed-field Ising chain Chiba’'24
If hx, hz # 0, then H is the unique non-trivial local JS-CM.

That is:

e There exists no L-supported JS-CM for L=10or3 < L < N/2.

e Every 2-supported JS-CM is a linear combination of H and I.

Completeness of JS results
If hx =0 or hy =0, then for any L there exists a non-trivial L-supported JS-CM.

That is, turning on the other magnetic field kills all these additional local constants of motion!

Similar results hold for other well-known models (1D and beyond). Proof strategy is always the same.
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Overview of JS proof strategy [Shiraishi'19]

Setup. Suppose that Q € Up, is an L-supported JS-CM. We expand it in Pauli basis as

0= T

£=0 AEP,,
D(A)=t
Plugging in the formulas for Q and H,
Lt1 L N
S mA=IQH =Y 3 Y ca(VelA ZiZil + hxIA, Xl + hz[A, Z])
£=0 AEP), =0 APy, i=1
D(A)=t D(A)=t

Using [Q, H] =0, i.e.,
ra=0 for all A € Ph,

and comparing both sides, we get a system of linear equations for ca.
Step 1. If 3 < L < N/2, then ca = 0 for all A such that D(A) = L, which means D(Q) < L — 1, contradiction.

Step 2. Work out by hand 1-supported and 2-supported JS-CMs to complete the proof.
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JS column notation for commutators

When [A,B] = C, we say that C is generated by A and B.

For example, XiYiy1Yit2Ziy3 in [Q, H] is generated by
[YiYiz1YiseZigs, Zi 1= 2iXiYit1YiteZigs
[XiYif1Yisa Yis, Xizs] =  2iXiYis1YiraZigs
[XiYis1 Xiv2, ZivaZizz]l = —2iX;Yiq1YiraZigs

We express these commutators as

term from Q Y Y Y Z X Y Y Y X Y X
term from H V4 X -7 Z
term from [Q , H]/(2i) X Y Y Z X Y Y Z X Y Y Z

These relations allow us to write the following linear equation

hzcyyyvz + hxexyyy — Jzexyx + ... = rxyyvz =0
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One example of JS reasoning

Let L > 2 and consider a string A= A} ... A,-LH_I € Pa, of length L appearing in Q = ZLO ZAGPAO cAA
D(A)=t
We show ca = 0 for several classes of strings, depending on their endpoints.

Case 1. If (A*, Af) = (X, Y) then ca = 0. We note that

X A2 . AL—l

x| N <

V4
X B oo AR V4

The generated string XA? - - - AL=1XZ has length L + 1. Note there is no other way to generate it! This gives

ek 41
ZCxp2..al—1y = Fyp2.  al—1x7-

Since rify 1,y =0and Jz #0, we get cgu u-1y = 0 as claimed.

Analogous proofs for strings of length L with endpoints (X, X), (Y, Y), (Y, X).
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One example of JS reasoning

Case 2. Assume (A!, AY) = (Z, X). We have

Z A? ... ALl X
X
Y A2 ... A1 x
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One example of JS reasoning

Case 2. Assume (A!, AY) = (Z, X). We have

7 A2 o AL-1 x X A2 - AL-1 X Y A2 . AL-1 v
X 4 V4
Yy A2 .. AL—1 X Y A2 500 AL-1 X Y A2 .. AL-1 X

e Since the endpoints YA? --- A“=2 X are both non-Z, this string cannot arise via the action of ZZ.
e However, the action of X or Z inside the string is possible. Here's one example:

Y ALl-1 X

<| X% N

A=t x

<
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One example of JS reasoning

Case 2. Assume (A!, AY) = (Z, X). We have

7 A2 o AL-1 x X A2 - AL-1 X Y A2 . AL-1 v
X 4 V4
Yy A2 .. AL—1 X Y A2 500 AL-1 X Y A2 .. AL-1 X

e Since the endpoints YA? --- A“=2 X are both non-Z, this string cannot arise via the action of ZZ.
e However, the action of X or Z inside the string is possible. Here's one example:

Y Z AL—1 X inside action
X hXCé,,,X — hz C)L<_“X +hz C\L/“,y +Z hx/z C{?X S I’\L/...X =0
Y Y A= x — — e
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One example of JS reasoning

Case 2. Assume (A!, AY) = (Z, X). We have

7 A2 o AL-1 x X A2 - AL-1 X Y A2 . AL-1 v
X 4 V4
Yy A2 .. AL—1 X Y A2 500 AL-1 X Y A2 .. AL-1 X

e Since the endpoints YA? --- A“=2 X are both non-Z, this string cannot arise via the action of ZZ.
e However, the action of X or Z inside the string is possible. Here's one example:

Y Z AL—1 X inside action
X hXCé,,,X — hz C)L<_“X +hz C\L/“,y +Z hx/z C{?X S I’\L/...X =0
Y Y A= x — — e
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One example of JS reasoning

Case 2. Assume (A!, AY) = (Z, X). We have

7 A2 o AL-1 x X A2 - AL-1 X Y A2 . AL-1 v
X 4 V4
Yy A2 .. AL—1 X Y A2 500 AL-1 X Y A2 .. AL-1 X

e Since the endpoints YA? --- A“=2 X are both non-Z, this string cannot arise via the action of ZZ.
e However, the action of X or Z inside the string is possible. Here's one example:

Y Z AL—1 X inside action
X hXCé,,,X — hz C)L<_“X +hz C\L/“,y +Z hx/z C{?X S I’\L/...X =0
Y v A=l x — — —
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One example of JS reasoning

Case 2. Assume (A!, AY) = (Z, X). We have
Z A2 ... oaAl-l x X A A= X Y A? A=y
x 4 z
Y A2 . AL—l X Y A2 AL71 X Y Az AL71 X

Since the endpoints YA? --- A“=2 X are both non-Z, this string cannot arise via the action of ZZ.

e However, the action of X or Z inside the string is possible. Here's one example:
Y V4 AL—1 X inside action
X hXCé,,,X — hz C)L<_“X +hz C\L/“,y +Z hx/z C{?X S I’\L/...X =0
Y v AL-1 x = " "

So strings of length L with endpoints (Z, X) and (X, Z) also vanish. Still remain: (Z, 2), (Z,Y), (Y, 2)
We continue until we show all of them vanish, hence D(Q) < L.

e The tricky part is to find the optimal order in which we consider and eliminate various types of ca as it
highly depends on the model. In this regard, we exactly follow [Chiba'24].
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Reduction step
& connecting the setups
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We now drop the periodic boundary condition. For simplicity we consider 1D, but all transfers to higher dim.

SD+ Property: characterization of €(as) via commuting dynamics Jaksié¢, Pillet, S, Tauber'25
Let ®, W € Bs. Then Ey, € €(ao) iff ag o afy = oy o ag.

Remark. [Araki'90] was the first to discuss constants of motion in the setting of infinitely extended quantum

spin systems, defining them via d¢ 0 dy = dy 0 d¢ on Ujye. Under SD+, the two definitions are equivalent.
We fix the box Ao = {1,..., N}. For some bigger box A we have

[Ho(A), [Hw(A), All = [Hu(A), [Ho(A), All - VA € Up,
and the Jacobi identity gives
[[Hw(N), Ho(A)], Al =0 VA € Up,

Then by standard calculations we obtain

trano ([Hw(A), Ho(A)]) = 0.
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By standard calculations we obtain
travne ([Hu(A), Ho(A)]) = 0.

and substitute into it
Hy(A) = Hy(No) + Hu(A\ Ao) + W (Ao),

Ho(A) = Ho(Ao) + Ho(A\ Ao) + Wo (o)

This leads to
[Hu(No), Ho(Ao)] + W = —tra\n, ([Ww(Ao), We(Mo)])

where

W = tran, ([W\V(/\OL Ho(No)] + [Hu(Mo), Wa (Ao)] + [Hu(A\ Ao), Wo(Ao)] + [Wu(Ao), Ho (A '\ /\0)])-
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By standard calculations we obtain
travne ([Hu(A), Ho(A)]) = 0.

and substitute into it
Hy(A) = Hy(No) + Hu(A\ Ao) + W (Ao),

Ho(A) = Ho(Ao) + Ho(A\ Ao) + Wo (o)

This leads to
[Hu(No), Ho(Ao)] + W = —tra\n, ([Ww(Ao), We(Mo)])

where
W = tran, ([W\V(/\OL Ho(No)] + [Hu(Mo), Wa (Ao)] + [Hu(A\ Ao), Wo(Ao)] + [Wu(Ao), Ho (A '\ /\0)])-
We will now prove that W = 0, so
[Hy(Ao), Ho(Ao)] = — trmae ([Was(Mo), We (Ao)]) =: Q'

Then we will prove that if Hy(Ao) is L-supported for some L, then @’ is at most (L — 1)-supported.

Intuition: Hy(No) is a candidate for a constant of motion. Recall JS-CM condition: [Q, H] = 0.
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Proof that WW =0

wt oo w2 w3 w4 ows o we

|
A\ No L L i | L L L N ={1,...,N}
@l @2 @ | cs 9
site: -2 -1 0 | 1 2 3

C := [W, H] = [ Pauli string W stretching across the boundary of Ag, Pauli string H fully inside or outside Ag]
When tI‘/\\/\OC 75 07
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Proof that WW =0

wt oo w2 w3 w4 ows o we

|
A\ No L L i | L L L N ={1,...,N}
@l @2 @ | cs 9
site: -2 -1 0 | 1 2 3

C := [W, H] = [ Pauli string W stretching across the boundary of Ag, Pauli string H fully inside or outside Ag]
When tI‘/\\/\OC 75 07
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Proof that WW =0

wt oo w2 w3 w4 ows o we

|
A\ No L L i | L L L N ={1,...,N}
@l @2 @ | cs 9
site: -2 -1 0 | 1 2 3

C := [W, H] = [ Pauli string W stretching across the boundary of Ag, Pauli string H fully inside or outside Ag]
When tra\p, C # 07

e C =[W,H] # 0 only if there is an odd number of Pauli matrices flipped to other Pauli matrices.

e Assume C # 0. Then traa, (C1C?C3|C*C5CP) = tr(C1C>C3)C* CoC®

o tr(C*C2C3) #£0onlyif C' =C>*=C*=1

So tra\ae C # 0 only if Pauli matrices both inside and outside Ao are affected.

64



Proof that WW =0

wt oo w2 w3 w4 ows o we

|
A\ No L L i | L L L N ={1,...,N}
@l @2 @ | cs 9
site: -2 -1 0 | 1 2 3

C := [W, H] = [ Pauli string W stretching across the boundary of Ag, Pauli string H fully inside or outside Ag]
When tra\p, C # 07

e C =[W,H] # 0 only if there is an odd number of Pauli matrices flipped to other Pauli matrices.

e Assume C # 0. Then traa, (C1C?C3|C*C5CP) = tr(C1C>C3)C* CoC®

o tr(C*C2C3) #£0onlyif C' =C>*=C*=1
So tra\ae C # 0 only if Pauli matrices both inside and outside Ao are affected.

But H acts either inside or outside, contradiction. Thus [Hy(Ao), Ho(Ao)] = — traya, ([Wa(Ao), We(Ao)])
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Proof that WW =0

wt oo w2 w3 w4 ows o we

|
A\ No L L i | L L L N ={1,...,N}
@l @2 @ | cs 9
site: -2 -1 0 | 1 2 3

C := [W, H] = [ Pauli string W stretching across the boundary of Ag, Pauli string H fully inside or outside Ag]

When tI‘/\\/\OC 75 07
e C =[W,H] # 0 only if there is an odd number of Pauli matrices flipped to other Pauli matrices.

e Assume C # 0. Then tra (C*C2C?|C*C°C®) = tr(C' C>C?)C* C°C® Note these conditions hold
o tr(C*C2C3) #£0onlyif C' =C>*=C*=1 for every string C given
So tra\ae C # 0 only if Pauli matrices both inside and outside Ao are affected. by some commutator!

But H acts either inside or outside, contradiction. Thus [Hy(Ao), Ho(Ao)] = — traya, ([Wa(Ao), We(Ao)])
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Proof that D(Q') <L -1

wtoo w2 w3 | o w4At o ws o ws
A\ Ao wloow? o owe | w4 WS we No={1,...,N}
@ @B B | & B c°

Suppose Hy(A) is L-supported for some L € N. We claim that
D(R)<L—-1 for Q" := trang ([Wa(Ao), W (Mo)])

Consider

C := [W, W] = [ Pauli string W across the boundary of Ao, Pauli string W across the boundary of A]

Recall that tra\p, C # O only if C=1---I|C'C*™...C" with i>2.
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Proof that D(Q') <L -1

wtoo w2 w3 | o w4At o ws o ws
A\ Ao wloow? o owe | w4 WS we No={1,...,N}
@ @B B | & B c°

Suppose Hy(A) is L-supported for some L € N. We claim that

D(R)<L—-1 for Q = travag ([Weo (Ao), War(Ao)])
Consider

C := [W, W] = [ Pauli string W across the boundary of Ao, Pauli string W across the boundary of A]

Recall that tra\p, C # O only if C=1---I|C'C*™...C" with i>2.

In consequence, travag (C) = C'C™™...Ct s supported inside {1,...,L—1}
thus it is of the form A; ® --- ® A;_1

The other endpoint of Ap analogously. So try\a,(C) is a lin. comb. of A;---A; 1 and Ay_42--- Ay
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Recovering the JS proof structure

Recall W € B¢ is a candidate for a Constant of Motion. We know that Hy(A) is L-supported for L € N.

Assume ® € B generates

N—1 N
Ho(Ao) = > (IxXiXips + Iy YiYiss + JzZiZisa) + > (hxXi + hy i + hzZ),
i=1 i=1
St - L+1
eduction ste asis exp.
== [Hu(Mo), Ho(Mo)] = —trag ([War(Ao), Wo(Ao)]) "= 37 >~ raA
f =0 AEP),
Q D(A)=¢

AND we know that D(Q’) < L — 1, which means ry =0 if D(A) € {L,L+1}.
Recall in JS setup we have rs = 0 for all A. Here we have less, but we also know the structure of Q’:

Crucial properties of Q’

D(Q') < L—1and @ is a linear comb. of the boundary-touching strings Ay ---A,_1 and Ay_j42--- An
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Mixed-field Ising chain is trivially admissible

Theorem. Jaksié, Pillet, S, Tauber'25
N—1

Let ® € By generate Ho(Ao) = >  J7ZiZi1 + Z (hxX; + hzZ;) with hx, hz # 0. Then €(ao) = {Eo}.
i=1 x=1

Step 1. (As in JS, be careful about the boundary)

Assume 3 < L < & Using ra = 0 if D(A) € {L, L+ 1}, we show ca = 0 for every string A of length L;
hence, D(Hw(Mo)) < L — 1. This contradicts the assumption that Hy(Ao) is L-supported.

Miraculously, the JS proof only uses ra = 0 for A of length L and L + 1, so we can follow it.
We just need some technical tweaks due to boundary.

Step 2. (Extra knowledge about Q' needed, then as in JS)
We investigate by hand the cases L =1 and L = 2, showing that Hy(Ao) = Ho(Ao) (up to equivalence)

Here the JS proof uses the full strength of its assumptions, while we have less. But we can make up for it
by exploiting the properties of Q' derived earlier, and then we can again follow JS.
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Proof overview: Step 1

Step 1.
We assume 3 < L < N/2 and for a string A of length L show:

(i) ca=0if Ais not of the form Z---YorY---Zor Z---Z.

(i) ca=0if Ais theform Z---Yor Y.--Z.

(iii) ca =0 if Ais the form Z--- Z.

This contradicts the assumption that Hy (/o) is L-supported. Hence Hy (/o) is at most 2-supported

We follow very closely the JS proof but we have to be careful about the boundary:

e Some equations do not hold for the boundary-touching strings as there is no ZoZy nor ZyZy1 in Ho(No)

o Shifting procedure: Cop=Car, = Can, = =G = 0
In JS setup, periodicity allows an unlimited number of shifts to the right.
The boundary forces us to make sure that:
e The shifting procedure works in both directions
e There is sufficient space (either to the left or to the right) for the required number of shifts.

This is where the assumption L < N /2 comes from
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Proof overview: Step 2

Step 2.
We investigate by hand L =1 and L = 2 and show that Hy(Ao) = aHo(Mo) + BI

Step 2a. Assume L = 2. Recall Q' is a linear combination of A; and Ap:
[Ho(Ao), Hu(Ao)] = Q" = (rg Xa + rvy Y1 + rzy Z1) + (rxy Xn + rvy Yn + rzy Zn) + il
We must show that rz, = rz, = 0. (Recall in JS we have Q' = 0 automatically)
Recall that
Q" = —trag([Wo(Mo), Wu(No)]) and  We(No) = —3J2(Z0Zs + ZnZny1)

Note there does not exist Ag, A1 € {X, Y, Z} that satisfy the following commutation relation:

Ao | A term from Wiy (Ao)
Z | Z where the structure is  term from Wy (Ao)
To | 7 term from Q'/(2i)

in consequence, rz; = 0= rz,. Knowing that rz, = 0 for all j, we can follow JS proof again.
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Proof overview: Step 2

Step 2b. First, show that the only potentially non-zero coefficients of Hy(/Ao) are cz,z, ¢z, cx;, and a.
We already know that for every j
ijx = ijy = Cij = Cyjy = ijz = Czjx =]

To show that czy = cv;z = cy; = 0, we use Step 2a that guarantees rz, = 0 for every j € Ao.

Namely
[Yh—)(j]:(Ql')Zj — —thYJ.ZI‘ZJIO — Cyj=0 VjE/\o
and
Yj Vi Zn Yier 4 Yin
Zj Zj+1 ZJ = J2Cyj + thijjJrl =0 ZJ Zj+1 Zj+1 = JZchJr1 + hZchYj+1 =10
Xi L Xi L Zi X 4 Xin

Therefore czyv,,, = cy;z,, =0 forall1<j<N-1
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Proof overview: Step 2

Step 2b. First, show that the only potentially non-zero coefficients of Hy(/Ao) are cz,z, ¢z, cx;, and a.
We already know that for every j
Cx;x = Cx;y = Cv;x = Cv;y = ¢cxz = czix =0
To show that czy = cv,z = cy, = 0, we use Step 2a that guarantees rz, = 0 for every j € Aq.
Next, we show that the coefficients are in correct proportion (this also means L = 1 is impossible):

czz/Jz = cz;/hz = cx;/hx

Indeed,
Z Zin X;
Xj _Zj Zj+1 — hXchZ = JzCXj =0 ie. ij/hx = Czjz/Jz
Yi L i Zin

The other one is analogous. Setting o := ¢ and 3 := cx; /hx, we finally obtain

Hy(No) = ol + BHo(Ao)
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Recap for mixed-field Ising chain

Theorem. Jaksié, Pillet, S, Tauber’'25
N—1 N

Let ® € By generate Ho(Ao) = > J7ZiZiy1 + » _(hxXi + hzZ;) with hx, hz # 0. Then €(a0) = {Eo}.
=) x=1

Main difference wrt JS: definition of Constants of Motion. JS-CM is stronger than our-CM.
Also, periodic vs. open boundary condition, which entails technical tweaks.

Open boundary condition are discussed in [Chiba'24] under JS-CM.

Step 1 of JS proof does not use the full strength of JS-CM:

While assuming Q" =0, it only uses D(Q") < L —1 (which is exactly what our-CM provides).

Step 2 of JS proof uses the full strength of JS-CM:
We catch up by using the explicit formula for Q" = — trag ([Wa(Ao), Wi (Ao)]).
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Other models




Summary of JS results: rank 2 models Yamaguchi, Chiba, Shiraishi’24

Back to periodic boundary condition. Let Jx, Jy # 0 and consider

N N
Ho(Mo) = ) (IxXiXisa + Jy YiYiua) + D (hxXi + hy Yi).
i=1 i=1
e If hx = hy = 0, the XY model has infinitely many (non-trivial local) JS-CM [Lieb, Schultz, Mattis'61]

° |fhx7500rhy#0:
o If Jy = —Jx(hy/hx)? and N is even, then there are two JS-CMs:

N
Ho(No) and Q= Z(*l)i(hxxi + hy Yi)(hxXit1 + hy Yig1)

i=1

e Otherwise, Ho(/Ao) is the unique JS-CM
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Summary of JS results: rank 3 models Yamaguchi, Chiba, Shiraishi’24

Back to periodic boundary condition. Let Jx, J,,Jz # 0 and consider

N N

Ho(No) = > (IxXiXisa + Iy Yi¥iea + JzZiZia) + ) (hxXi + hy Y + hzZ)).
i=1 i=1
o If Jx = Jy = Jz, the XXX model has infinitely many JS-CMs (for any hx, hy, hz) [Bethe'31]
o If Ux = Jy # Jz:
e if hx = hy =0, the XXZ model has infinitely many JS-CMs [C.-N. Yang, C.-P. Yang'66]

e if hx #0 or hy # 0, then Ho(Ao) is the unique JS-CM

o If Jx, Jy, Jz are all different:
e if hx = hy = hzy =0, the XYZ model has infinitely many JS-CMs [Baxter'71]
e if Jx = —Jy and hz # 0, there are two JS-CMs: Ho(Ao) and Q = 2{":1(—1)"/122[

e if at least one of hx, hy, hz is non-zero, Ho(/Ao) is the unique JS-CM

In particular, among such chains there is no missing integrable system that awaits to be discovered.
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Summary of JS results: other models

Higher dim Ising model Chiba’'25
Let Ao = {1,...,N}¥. Assume Jz # 0 and hx # 0 and consider
Ho(Ao) = Z JzZ,Z; + Z(hXXi + hzZ;).

i,j€No i€No
li—jl=1

Any local JS-CM is a linear combination of Hs(Ao) and 1.

Higher dim Heisenberg model Shiraishi, Tasaki'25
Assume Jx # 0 and Jy # 0 and consider
Ho(No) = Z (IxXiXi + Iy YiY; + JzZ: Z)) + Z(hXXf + hyYi+ hzZ;).

i,j€No i€No
li—jl=1

Any local JS-CM is a linear combination of He(/A¢) and some one-body operator and I.
Other 1D models considered by JS

e Heisenberg model with next-nearest-neighbor interaction  [Shiraishi'24]

e PXP model  [Park, Lee'24]

e Spin-1 model with bilinear biquadratic interactions [Park, Lee'24], [Hokkyo, Yamaguchi, Chiba'24] 24



We keep working on getting all the JS results in our setting:
e So far, only the Ising chain has been written down with all details

e Next target is the XY chain — JS have not considered open boundary condition for it
e Conjecture: generically, finite-range interactions have no non-trivial local constants of motion

e We are also looking at what happens to the dynamics when a transverse field is added to
the classical Ising chain, which causes all the constants of motion to instantly disappear

Remark: The course has only covered spin systems, but the results extend to lattice fermionic systems.
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