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Quantum lattice spin systems



Quantum lattice spin systems

� Lattice Zd , family of translations {τx}x∈Zd , family F of �nite subsets of Zd

� Fixed Hilbert space H0 := CN

� Hx := H0 for every x ∈ Zd

� HX := ⊗x∈XHx for X ∈ F , and UX := bounded operators on HX

� UX ∋ A 7→ A⊗ 1X̃\X ∈ UX̃ for X ⊂ X̃ ∈ F

� Local observables Uloc :=
⋃

X∈F UX

� Spin C*-algebra U is the norm-completion of Uloc

� Translation invariant states: SI = {ρ : U → C | ρ positive, linear, ρ(1) = 1 and ρ ◦ τx = ρ ∀x ∈ Zd}
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Interactions, local Hamiltonians, dynamics

� Interaction: family {Φ(X )}X∈F such that Φ(X ) ∈ UX is self-adjoint.

We always assume translation invariance: τx(Φ(X )) = Φ(X + x) ∀x ∈ Zd ∀X ∈ F

� HΦ(Λ) =
∑
X⊂Λ

Φ(X ) is the local Hamiltonian on Λ ∈ F

� Local dynamics on Λ:
αt
Φ,Λ(A) = e

itHΦ(Λ)Ae−itHΦ(Λ), A ∈ UΛ

� We say the (global) dynamics exists if for all A ∈ U the limit

αt
Φ(A) := lim

Λ↑Zd
αt
Φ,Λ(A)

exists and is uniform for t in compact sets, where Λ ↑ Zd denotes the limit over an increasing and

exhaustive family of cubes in Zd centred at 0

� Time evolution of a state: ρt := ρ ◦ αt
Φ
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Spaces of interactions

� Big space of interactions Bb = {Φ : ∥Φ∥b < ∞} where

∥Φ∥b =
∑
X∋0

∥Φ(X )∥
|X |

� Small space of interactions Bs = {Φ : ∥Φ∥s < ∞} where

∥Φ∥s =
∑
X∋0

∥Φ(X )∥

� Finite range interactions:

Bf = {Φ : ∃R ∈ N diam(X ) > R ⇒ Φ(X ) = 0}

We have Bf ⊂ Bs ⊂ Bb, both Bs and Bb are Banach spaces, and Bf is a dense subset of each

� αΦ may not exist for Φ ∈ Bs

� αΦ does exist for Φ ∈ Bf
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Gibbs variational principle and Equilibrium States

Let Φ ∈ Bb and ρ ∈ SI. Notation: ρΛ ∈ UΛ satis�es ρ(A) = tr(ρΛA) for all A ∈ UΛ (density matrix)

� Speci�c entropy of ρ:

s(ρ) := − lim
Λ↑Zd

1
|Λ| tr(ρΛ log ρΛ) ∈ [0, logN] It is a�ne & upper semi-continuous

� Speci�c energy of Φ:

EΦ :=
∑
X∋0

Φ(X )

|X | ∈ U It satis�es lim
Λ↑Zd

1
|Λ|ρ(HΦ(Λ)) = ρ(EΦ) for all ρ ∈ SI.

� Pressure of Φ:

P(Φ) = lim
Λ↑Zd

1
|Λ| log(tr(e

−HΦ(Λ))) < ∞

Gibbs variational principle: P(βΦ) = supρ∈SI

(
s(ρ)− βρ(EΦ)

)
for inverse temperature β

Maximizers are the equilibrium states: Seq(βΦ) = {ρ ∈ SI |P(βΦ) = s(ρ)− βρ(EΦ)}

Dual variational principle: s(ρ) = infΦ∈Bb
(
P(βΦ) + βρ(EΦ)

)
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Surface energies

Surface energies for Λ ∈ F of an interaction Φ are de�ned as

WΦ(Λ) =
∑

X∩Λ̸=∅
X∩Λc ̸=∅

Φ(X )

= lim
Λ′↑Zd

(HΦ(Λ
′)− HΦ(Λ)− HΦ(Λ

′ \ Λ))

On physical grounds, surface energies should play a central role in the study of approach to equilibrium

� Surface energies may not exist for Φ ∈ Bb

� Surface energies do exist for Φ ∈ Bs

Proposition

Let Φ ∈ Bs. Then WΦ(Λ) exists for every Λ ∈ F , and lim
Λ↑Zd

1
|Λ|WΦ(Λ) = 0.
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Bsd space of physical interactions

For Φ ∈ Bs consider the ∗-derivation δΦ : Uloc → U de�ned by

δΦ(A) =
∑
X∈F

[Φ(X ),A] = lim
Λ↑Zd

[HΦ(Λ),A], A ∈ Uloc

It is closable and we denote its closure again by δΦ.

De�nition of Bsd

Bsd = {Φ ∈ Bs : δΦ generates dynamics αΦ on U}

Theorem

δΦ generates dynamics αΦ on U if and only if (i± δΦ)Uloc is dense in U . In that case

αt
Φ(A) = lim

Λ↑Zd
e
itHΦ(Λ)Ae−itHΦ(Λ), A ∈ U ,

where the limit is uniform for t in compacts.
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Bsd space of physical interactions

The naturalness of Bsd stems also from the following result

Theorem

Suppose that Φ,Ψ ∈ Bsd. Then the following statements are equivalent:

� Φ and Ψ are equivalent � to be understood intuitively for now

� Seq(Φ) ∩ Seq(Ψ) ̸= ∅

� Seq(Φ) = Seq(Ψ)

� αΦ = αΨ

In contrast, Bb contains non-equivalent interactions that share an equilibrium state, which is pathological

Important classes of interactions are in Bsd which we will see later on:

� The well-known space of exponentially-decaying interactions: Br ⊂ Bsd for r > 0.

� We will also work with the space of diameter-interactions: Bdiam
γ ⊂ Bsd for γ > d .
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Regularity

Speci�c relative entropy of ρ ∈ SI with respect to ω ∈ SI (assuming the limit exists):

s(ρ|ω) := lim
Λ↑Zd

1
|Λ| tr(ρΛ(log ρΛ − logωΛ)) ≥ 0

De�nition

A pair (ω,Ψ) ∈ SI × Bsd is called regular if the relative entropy s(ρ|ω) exists for all ρ ∈ SI and satis�es the

entropy balance equation:

s(ρ|ω) = −s(ρ) + ρ(EΨ) + P(Ψ).

� (ω,Ψ) is regular =⇒ ω ∈ Seq(Ψ)

� R-Conjecture: (ω,Ψ) is regular for every Ψ ∈ Bsd and ω ∈ Seq(Ψ)

� It is a very hard open problem involving the structural aspects of QSS.

� Thm: If Ψ ∈ Br with ∥Ψ∥r < r , or Ψ ∈ Bf in d = 1, then (ω,Ψ) is regular for every ω ∈ Seq(Ψ)

[Jak²i¢, Pillet, Tauber'24]
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Approach to Equilibrium

ω ωT ω+

?
= νeq
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Equilibrium Steady States (ESS)

Let ω ∈ SI and Φ ∈ Bsd. For T > 0 de�ne

ωT =
1

T

∫ T

0

ω ◦ αt
Φ dt

and consider the set of Equilibrium Steady States (ESS):

S+(ω,Φ) = {weak*-limit points of (ωT )T>0 as T → ∞}.

� ω+ ∈ S+(ω,Φ) i� ω+ = limn→∞ ωTn for some subseqence Tn ↑ ∞

� S+(ω,Φ) = {ω+} i� ω+ = limT→∞ ωT

� ω+ is αΦ-invariant

� ω+ = ω i� ω is αΦ-invariant, which is a trivial setting (which we always exclude)
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Basic Conservation Laws

We postulate the conservation of speci�c entropy and energy:

∀ω ∈ SI ∀t > 0 s(ω ◦ αt
Φ) = s(ω) and (ω ◦ αt

Φ)(EΦ) = ω(EΦ)

Fix the initial state ω ∈ SI. For the time average we get:

∀T > 0 s(ω) = s(ωT ) and ω(EΦ) = ωT (EΦ)

So for any ω+ ∈ S+(ω,Φ):

s(ω) ≤ s(ω+) and ω(EΦ) = ω+(EΦ).

� EΦ is a constant of motion of the dynamics αΦ

� Ruelle problem: when does s(ω) < s(ω+) hold?

� We will further discuss these (and other) conservation laws tomorrow.

12



Approach to Thermal Equilibrium � de�nition

Let ω ∈ SI and Φ ∈ Bsd. Consider the initial speci�c energy e0 := ω(EΦ). We know it is preserved.

Setting the equilibrium inverse temperature β∗

We set such β∗ that for some νeq ∈ Seq(β∗Φ) we have νeq(EΦ) = e0, provided such β∗ exists.

If such β∗ exists, it is unique. If it does not exist, approach to thermal equilibrium is impossible.

De�nition of Approach to Thermal Equilibrium

The pair (ω,Φ) has the property of Approach to Thermal Equilibrium if

(1) S+(ω,Φ) = {ω+}

(2) ω+ ∈ Seq(β∗Φ)

� The dynamical problem (1) can be answered only in the context of speci�c models.

� We focus on the structural theory of (2), developing it for ω+ ∈ S+(ω,Φ).
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Constants of Motion & Admissible States

Consider the real vector space Ureal of self-adjoint elements of U .

Constant of Motion

We call C ∈ Ureal a constant of motion for Φ ∈ Bsd when

ρ ◦ αt
Φ(C) = ρ(C) ∀ρ ∈ SI ∀t ∈ R

We denote by C = C(αΦ) the set of all constants of motion for Φ.

� There is a natural equivalence structure in C

� Recall EΦ ∈ C. The choice of β∗ guarantees ω(EΦ) = e0 = νeq(EΦ)

� Suppose that for each νeq∈Seq(β∗Φ) satisfying e0=νeq(EΦ) there exists C ∈C such that ω(C ) ̸=νeq(C)

Approach to Thermal Equilibrium is then impossible!

Admissible States

The initial state ω is called admissible for νeq ∈ Seq(β∗Φ) when ω(C) = νeq(C) for all C ∈ C.
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Approach to Thermal Equilibrium � assumptions

Let ω ∈ SI and Φ ∈ Bsd. Recall we assume the basic conservation laws, in particular EΦ ∈ C.

Theorem Jak²i¢, Pillet, S, Tauber '25

Assume that Seq(β∗Φ) = {νeq} with (νeq, β∗Φ) regular, and that ω is admissible for νeq.

For ω+ ∈ S+(ω,Φ), the following statements are equivalent:

(1) ω+ = νeq

(2) ω+ ∈ Seq(Ψ+) with Ψ+ ∈ Bsd such that (ω+,Ψ+) is regular, and EΨ+ ∈ C

� Regularity of (νeq, β∗Φ) and uniqueness of νeq can be assured by taking su�ciently nice Φ.

Admissibility of ω is a physical constraint.

� Minimal physicality requirement Ψ+ ∈ Bsd has to be established for a speci�c model. (Maybe it can be

proven for su�ciently nice Φ or ω?) Either it holds or the situation is unphysical.

� Regularity of (ω+,Ψ+) follows from the R-Conjecture or it can be established for a speci�c model.

� Conditions assuring EΨ+ ∈ C will be discussed tomorrow.
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Approach to Thermal Equilibrium � proof

(2) ⇒ (1) We get s(ω+) ≥ s(νeq) as follows:

s(νeq|ω+) = −s(νeq) + νeq(EΨ+) + P(Ψ+) (regularity of (ω+,Ψ+))

= −s(νeq) + ω(EΨ+) + P(Ψ+) (admissibility)

= −s(νeq) + ω+(EΨ+) + P(Ψ+) (EΨ+ ∈ C)

= −s(νeq) + s(ω+) ≥ 0 (ω+ ∈ Seq(Ψ+))

The opposite inequality s(ω+) ≤ s(νeq) in proven analogously

s(ω+|νeq) = −s(ω+) + β∗ω+(EΦ) + P(β∗Φ) (regularity of (νeq, β∗Φ))

= −s(ω+) + β∗νeq(EΦ) + P(β∗Φ) (EΦ ∈ C and admissibility)

= −s(ω+) + s(νeq) ≥ 0 (νeq ∈ Seq(β∗Φ))

So we have s(ω+) = s(νeq) and ω+(EΦ) = νeq(EΦ). Gibbs var. principle gives ω+ ∈ Seq(β∗Φ) = {νeq}
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Approach to Thermal Equilibrium � admissibility

Let ω ∈ SI and Φ ∈ Bsd. Recall we assume the basic conservation laws, in particular EΦ ∈ C.

Theorem Jak²i¢, Pillet, S, Tauber '25

Assume that Seq(β∗Φ) = {νeq} with (νeq, β∗Φ) regular, and that ω is admissible for νeq.

For ω+ ∈ S+(ω,Φ), the following statements are equivalent:

(1) ω+ = νeq

(2) ω+ ∈ Seq(Ψ+) with Ψ+ ∈ Bsd such that EΨ+ ∈ C and (ω+,Ψ+) is regular.

� The admissibility of ω with respect to νeq is a physical constraint.

� Now we will discuss the case when ω is not admissible. Approach to Thermal Equilibrium cannot happen

� Principle of maximum entropy:

In the long time the system settles in a state that maximizes entropy while respecting constants of motion.
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Ruelle's physical equivalence

Equivalence of observables

Let A,B ∈ Ureal.
A ∼O B ⇐⇒ ∃c ∈ R ∀ω ∈ SI ω(A) = ω(B) + c

A ∼sO B ⇐⇒ ∀ω ∈ SI ω(A) = ω(B)

Equivalence of interactions

Let Ψ,Φ ∈ Bb.
Ψ ∼I Φ ∈ Bb ⇐⇒ EΨ ∼O EΦ

Ψ ∼sI Φ ∈ Bb ⇐⇒ EΨ ∼sO EΦ

Ruelle's maps

The following maps are isometries:

Bb/∼I ∋ [Ψ] 7−→ [EΨ] ∈ Ureal/∼O

Bb/∼sI ∋ [Ψ] 7−→ [EΨ] ∈ Ureal/∼sO

What we will see most often: C ∈ C −→ ΨC ∈ Bb −→ EΨC . Then EΨC ∼sO C , i.e. ω(C) = ω(EΨC ) ∀ω ∈ SI
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Regular and Physical Constants of Motion

We distinguish two special classes of constants of motion. Let C ∈ C.

Regular constants of motion

� C ∈ Creg ⇐⇒ (ρ,ΨC ) regular for every ρ ∈ Seq(ΨC )

� Equilibria of Creg: ρ ∈ Seq(Creg) ⇐⇒ ∃C ∈ Creg ρ ∈ Seq(ΨC )

Physical constants of motion

� C ∈ Cphys ⇐⇒ ΨC ∈ Bsd

� Equilibria of Cphys:

ρ ∈ Seq(Cphys) ⇐⇒ ∃C ∈ Cphys ρ ∈ Seq(ΨC ) ⇐⇒ ∃Ψ ∈ Bsd ρ ∈ Seq(Ψ) and EΨ ∈ C

� Under R-conjecture: Cphys ⊂ Creg

� Note that ω+ ∈ Seq(Cphys) is equivalent to the condition we need for ATE
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Variational characterization of Seq(Creg)

Theorem

Let ω+ ∈ S+(ω,Φ). Then

s(ω+) ≤ s(ω) + infρ∈Seq(Creg) s(ω|ρ)

and

ω+ ∈ Seq(Creg) ⇐⇒ infρ∈Seq(Creg) s(ω|ρ) = s(ω|ω+) = s(ω+)− s(ω)

Proof. Let C ∈ Creg be associated to ΨC . Recall C ∼sO EΨC . For every ρ ∈ Seq(ΨC ) and T > 0

s(ω|ρ) = −s(ω) + ω(EΨC ) + P(ΨC ) (regularity of (ρ,ΨC ))

= −s(ω) + ωT (EΨC ) + P(ΨC ) (C ∈ C)

= −s(ω) + ω+(EΨC ) + P(ΨC ) (Tn ↑ ∞ so that ωTn → ω+)

≥ −s(ω) + s(ω+) (Gibbs variational principle)

Hence infρ∈Seq(Creg) s(ω|ρ) ≥ s(ω+)− s(ω). The other claim follows.
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Minimizers of relative entropy

Denote the set of minimizers by Seq,+(Creg) = Seq(Creg) ∩ S+(ω,Φ).

Proposition

� Let ω+, ω̃+ ∈ Seq,+(Creg). Then s(ω+) = s(ω̃+) and s(ω+|ω̃+) = 0.

� There exists C ∈ Creg, unique up to equivalence, such that Seq,+(Creg) ⊂ Seq(ΨC ).

Proof. Equality of speci�c entropies follows immediately by the previous theorem.

For speci�c relative entropy, let C ∈ Creg be such that ω+ ∈ Seq(ΨC ). Then

s(ω̃+|ω+) = −s(ω̃+) + ω̃+(EΨC ) + P(ΨC ) (regularity of (ω+,ΨC ))

= −s(ω) + ω(EΨC ) + P(ΨC ) (entropy and C conserved)

= −s(ω+) + ω+(EΨC ) + P(ΨC ) = 0, (entropy and C conserved & GVP)

This also means that ω̃+ ∈ Seq(ΨC ), which yields the second claim.

21



Constrained Approach to Equilibrium

Constrained Approach to Equilibrium

The pair (ω,Φ) has the property of the Constrained Approach to Equilibrium if

(1) S+(ω,Φ) = {ω+}

(2) ω+ ∈ Seq(Cphys) and s(ω+) = s(ω) + infρ∈Seq(Cphys) s(ω|ρ) with unique minimizer ω+.

Interpretation of (2): The system relaxes to a state of maximal entropy compatible with constant of motions.

Also, by Quantum Stein lemma: Among all states in Seq(Cphys), ω+ is the least distinguishable from ω.

� Assume R-Conjecture. Then ω+ ∈ Seq(Cphys) ⊂ Seq(Creg), so the variational char. of Seq(Creg) holds.

Thus s(ω+) = s(ω) + infρ∈Seq(Cphys) s(ω|ρ) with minimizer ω+.

� If Part (1) holds, this minimizer is unique. Part (2) reduces to ω+ ∈ Seq(Cphys)

� Recall in ATE-de�nition we require ω+ ∈ Seq(β∗Φ) ⊂ Seq(Cphys)

Assume as in ATE-theorem that ω+ ∈ Seq(Ψ+) with Ψ+ ∈ Bsd and EΨ+ ∈ C. Then ω+ ∈ Seq(Cphys).

Key question now: what conditions ensure EΨ+ ∈ C?
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Quantum Stein Lemma

Let ρ, σ ∈ SI and Λ ∈ F .

H0: the system is in state ρ

H1: the system is in state σ

Type I error = P(we guessed ρ | true state is σ)

= tr(σΛT0) =: αΛ,TΛ

Type II error = P(we guessed σ | true state is ρ)

= tr(ρΛT1) =: βΛ,TΛ

Fix ϵ small. We pick optimal TΛ to minimize Type II error while keeping Type I error under control:

βΛ = infTΛ{βΛ,TΛ | αΛ,TΛ ≤ ϵ}

βΛ ≈ e
−k|Λ| with k = − limΛ↑Zd

1
|Λ| log βΛ

Quantum Stein Lemma: k = s(ρ|σ) i.e. βΛ ≈ e
−|Λ|s(ρ|σ)

QSL gives the operational meaning of speci�c relative entropy as the optimal asymptotic exponential

decay rate of Type II error with Type I error �xed (asymmetric hypothesis testing).
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Quantum Stein Lemma

Theorem

Assume that for some δ > 0 the following limit exists and is �nite for s ∈ [0, 1+ δ]:

e(s) = lim
Λ↑Zd

1
|Λ| log trΛ(σ

s
Λρ

1−s
Λ ).

Also, assume that the function e is continuous on [0, 1+ δ], di�erentiable on (0, 1], and D+e(0) < e′(1).

Then the Quantum Stein Lemma holds for (σ, ρ).

Let Φ,Ψ ∈ Bf and ρ ∈ Seq(Φ), σ ∈ Seq(Ψ).

� If d = 1, then QSL holds for (σ, ρ) i� Φ,Ψ are not equivalent

� If d > 1, then QSL holds for (σ, ρ) i� Φ,Ψ are not equivalent and both ∥Φ∥s and ∥Ψ∥s are small enough

Interpretation of Constrained Approach to Equilibrium via Quantum Stein Lemma

Assume the Quantum Stein Lemma holds for all pairs (ω, ν), ν ∈ Seq(Cphys).
Among all equilibrium states in Seq(Cphys), ω+ is the least distinguishable from ω.
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Key question now:

Suppose that ω+ ∈ Seq(Ψ+) with Ψ+ ∈ Bsd. How can we ensure that EΨ+ ∈ C?

Next:

� Structural theory of Constants of Motion:

� What assures EΨ+ ∈ C? Conjecture SD and Conjecture R+SE

� Additional Conjecture SD+++ to characterize C (useful for trivial admissibility later on)

� Conservation Laws:

� basic CLs for speci�c entropy and energy (recall they have been assumed all the time)

� additional CLs as partial solutions to Conjectures

Mini-Dictionary:

� SD stands for surface-dynamics

� SD+ for surface dynamics plus something else

� R for regularity

� SE for speci�c (relative) entropy

25



Constants of Motion

� Aim: �nd natural conditions on (Φ,Ψ) under which EΨ ∈ C(αΦ)

� Optimally: �nd characterization of C(αΦ)

� There's going to be two parts:

1. Conditions related to surface energies and commuting dynamics

2. Conditions related to regularity and speci�c relative entropy
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Characterization of C via Commuting Dynamics: Motivation

Consider ω+ ∈ S+(ω,Φ) ∩ Seq(Ψ+) with Ψ+ ∈ Bsd. Then

� ω+ is a KMS state for s 7→ αs
Ψ+

� ω+ is αΦ-invariant, so a KMS state for s 7→ α−t
Φ ◦ αs

Ψ+
◦ αt

Φ for any �xed t ∈ R.

Shared KMS state ⇒ the two dynamics coincide:

α−t
Φ ◦ αs

Ψ+
◦ αt

Φ = αs
Ψ+

∀t, s ∈ R

That is, αΨ+ is preserved by αΦ.

Does αt
Φ ◦ αs

Ψ+
= αs

Ψ+
◦ αt

Φ imply that EΨ+ ∈ C? Are those two equivalent?
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Characterization of C via Commuting Dynamics: SD property

Let Φ,Ψ ∈ Bsd. Fix t ∈ R and for each Λ ∈ F consider a dressed Hamiltonian:

Ht(Λ) := e
−itHΦ(Λ)HΨ(Λ)e

itHΦ(Λ) = α−t
Φ,Λ(HΨ(Λ)).

� Generated dynamics: s 7→ α−t
Φ ◦ αs

Ψ ◦ αt
Φ

� Surface energies: Wt(Λ) = limΛ′↑Zd [Ht(Λ
′)− Ht(Λ)− Ht(Λ

′ \ Λ)]

� The corresponding translation-inv. interaction Ψt is uniquely de�ned as (but it need not be even in Bb!)

Ψt(Λ) =
∑

X⊂Λ
(−1)|Λ|−|X |Ht(X )

SD property

We say (Φ,Ψ) has the SD property if Wt(Λ) exists for all Λ ∈ F , and limΛ↑Zd
1
|Λ|Wt(Λ) = 0, for |t| < ϵ.

Theorem Jak²i¢, Pillet, S, Tauber '25

Let (Φ,Ψ) with SD property. Then αt
Φ ◦ αs

Ψ = αs
Ψ ◦ αt

Φ =⇒ EΨ ∈ C.

Conjecture SD: For any Φ,Ψ ∈ Bsd, the pair (Φ,Ψ) has SD property.
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Characterization of C via Commuting Dynamics: SD+ Property

Theorem Jak²i¢, Pillet, S, Tauber '25

Let Φ,Ψ ∈ Bsd. Then EΨ ∈ C and Ψt ∈ Bsd for |t| < ϵ =⇒ αt
Φ ◦ αs

Ψ = αs
Ψ ◦ αt

Φ.

If the pair (Φ,Ψ) has SD property, for each |t| < ϵ we can de�ne the derivation δt on Uloc by

δt(A) = i [Ht(Λ),A] + i [Wt(Λ),A], A ∈ UΛ.

SD+ property

We say (Φ,Ψ) has SD+ property if it has SD property and in addition the following holds for |t| < ϵ:

� (i± δt)Uloc is dense in U

� limΛ↑Zd
1
|Λ|∥α

t
Φ(HΨ(Λ))− αt

Φ,Λ(HΨ(Λ))∥ = 0

Theorem Jak²i¢, Pillet, S, Tauber '25

Let Φ,Ψ ∈ Bsd with SD+ property. Then EΨ ∈ C ⇐⇒ αt
Φ ◦ αs

Ψ = αs
Ψ ◦ αt

Φ.

Conjecture SD+: For any Φ,Ψ ∈ Bsd, the pair (Φ,Ψ) has SD+ property.
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Characterization of C via Commuting Dynamics: SD+ Property
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Characterization of C via relative entropy

Fix Φ ∈ Bsd. Recall we assume conservation of speci�c entropy: s(ρ ◦ αt
Φ) = s(ρ) for all ρ ∈ SI, t ∈ R.

Proposition

Let Ψ ∈ Bsd and ω ∈ Seq(Ψ). Assume that (ω,Ψ) is regular. Then

∀t ∈ R ∀ρ ∈ SI s(ρ ◦ αt
Φ|ω) = s(ρ|ω) ⇐⇒ EΨ ∈ C

Proof is immediate:
s(ρ|ω) = −s(ρ) + ρ(EΨ) + P(Ψ)

s(ρ ◦ αt
Φ|ω) = −s(ρ ◦ αt

Φ) + (ρ ◦ αt
Φ)(EΨ) + P(Ψ)

Conjecture R+SE: Conjecture R holds and for any Φ,Ψ ∈ Bsd and ω ∈ Seq(Ψ) we have

∀t ∈ R ∀ρ ∈ SI s(ρ ◦ αt
Φ|ω) = s(ρ|ω)

� We have seen various properties of (Φ,Ψ) that assure EΨ ∈ C(αΦ)

� Conjectures say: All reasonable/physical ( = Bsd) interactions have these properties

� Conjectures concern structural properties of QSS, in particular they have nothing to do with time → ∞
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Characterization of C via relative entropy
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Back to Approach to Thermal Equilibrium

Let ω ∈ SI and Φ ∈ Bsd.

Theorem Jak²i¢, Pillet, S, Tauber '25

Assume that Seq(β∗Φ) = {νeq} with (νeq, β∗Φ) regular, and that ω is admissible for νeq.

For ω+ ∈ S+(ω,Φ), the following statements are equivalent:

(1) ω+ = νeq

(2) ω+ ∈ Seq(Ψ+) with Ψ+ ∈ Bsd such that (ω+,Ψ+) is regular, and EΨ+ ∈ C.

� Recall Ψ+ ∈ Bsd is a minimal physicality requirement.

� If Conjecture R holds, then (ω+,Ψ+) is regular.

� If either Conjecture SD or Conjecture R+SE holds, then EΨ+ ∈ C.

Thus, assuming the conjectures and a physically relevant setting, Approach to Thermal Equilibrium follows!

Key questions now:

� When do these conjectures hold (if at all...)?

� What about SD+?
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(Spoiler) Why SD+? Non-integrable systems

Let ω ∈ SI and Φ ∈ Bsd.

Theorem Jak²i¢, Pillet, S, Tauber '25

Assume Seq(β∗Φ) = {νeq} with (νeq, β∗Φ) regular, and EΦ is the unique constant of motion (up to ∼).

Let ω+ ∈ S+(ω,Φ) and assume that ω+ ∈ Seq(Ψ+) with Ψ+ ∈ Bsd and EΨ+ ∈ C.

Then ω+ = νeq.

� Regularity of (ω+,Ψ+) is not required! Price to pay: we must verify there are no additional

constants of motion. This is where the characterization of C via Property SD+ intervenes.

� There's new results started by [Shiraishi'19] proving the non-integrability (≈ unique constant of motion)

of a large class of 1D-models, also extended recently to higher dimensions.

� Using SD+ property, we can connect our setting with these results. More on Friday.
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Conservation Laws

(& partial solutions to Conjectures)

� Basic conservation laws: speci�c entropy and energy

� Conjectures via conservation laws for various properties
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Basic Conservation Laws

Br = {Φ : ∥Φ∥r < ∞} with ∥Φ∥r =
∑

X∋0
e
r(|X |−1)∥Φ(X )∥ and r > 0

Bdiam
γ = {Φ : ∥Φ∥diamγ < ∞} with ∥Φ∥diamγ =

∑
X∋0

|X |[diam(X )]γ∥Φ(X )∥ and γ > 0

� Both Br and Bdiam
γ are Banach spaces and Bf is a dense subset of each

� Br with r > 0 and Bdiam
γ with γ > d are subsets of Bsd ([Bratelli-Robinson] and [Bru-Pedra], respectively)

� Bdiam
γ and Br are incomparable

Theorem: Basic Conservation Laws

Let Φ ∈ Br with r > 0, or Φ ∈ Bdiam
γ with γ > 2d . Then

s(ω ◦ αt
Φ) = s(ω), ω ◦ αt

Φ(EΦ) = ω(Eϕ) ∀t ∈ R ∀ω ∈ SI

Entropy in Br [Lanford-Robinson'68], Energy in Br [Jak²i¢-Pillet-Tauber'24], both in Bdiam
γ [Jak²i¢-Pillet-S-Tauber'25]

� For Br , the proofs of CL for energy and entropy are completely di�erent

� For Bdiam
γ , the Lieb�Robinson bound provides the common framework for both CLs
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Lieb�Robinson bound

Theorem [Nachtergaele-Sims-Young'19]

Let Φ ∈ Bdiam
γ with γ > d , and 0 < ϵ < γ − d . Then:

� Dynamics αΦ exists

� Lieb-Robinson bound: Let t ∈ R, Λ0 ⊂ Λ, and A ∈ UΛ0 .

∃ct > 0 ∥αt
Φ(A)− αt

Φ,Λ(A)∥ ≤ ct∥A∥|Λ0|(1+ dist(Λ0,Zd \ Λ))−(γ−d−ϵ)

Proving the conservation of speci�c entropy via the Lieb�Robinson bound has been suggested by Wreszinski:

� W. F. Wreszinski: Irreversibility, the time arrow and a dynamical proof of the second law of thermodynamics.

Quantum Stud.: Math. Found. 7 (2020)

� W. F. Wreszinski: The second law of thermodynamics as a deterministic theorem for quantum spin systems.

Rev. Math. Phys. 35 (2023)
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CLs for energy in Bdiam
γ : sketch of the proof 1/3

For Λ ∈ F :

(ρ ◦ αt
Φ,Λ)(HΛ(Φ)) = ρ(eitHΛ(Φ)HΛ(Φ)e

−itHΛ(Φ)) = ρ(HΛ(Φ)),

which gives
lim
Λ↑Zd

1
|Λ| (ρ ◦ αt

Φ,Λ)(HΛ(Φ)) = lim
Λ↑Zd

1
|Λ|ρ(HΛ(Φ)) = ρ(EΦ).

On the other hand,
lim
Λ↑Zd

1
|Λ| (ρ ◦ αt

Φ)(HΛ(Φ)) = (ρ ◦ αt
Φ)(EΦ).

Proposition

Let Φ ∈ Bdiam
γ with γ > 2d . Then

∀ρ ∈ SI ∀t ∈ R lim
Λ↑Zd

1
|Λ| |(ρ ◦ αt

Φ)(HΛ(Φ))− (ρ ◦ αt
Φ,Λ)(HΛ(Φ))| = 0

|(ρ ◦ αt
Φ)(HΛ(Φ))− (ρ ◦ αt

Φ,Λ)(HΛ(Φ))| =
∣∣ρ(αt

Φ(HΛ(Φ))− αt
Φ,Λ(HΛ(Φ))

)∣∣
≤ ∥αt

Φ(HΛ(Φ))− αt
Φ,Λ(HΛ(Φ))∥

=⇒ It su�ces to show ∀t ∈ R limΛ↑Zd
1
|Λ|∥α

t
Φ(HΛ(Φ))− αt

Φ,Λ(HΛ(Φ))∥ = 0
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γ : sketch of the proof 1/3
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CLs for energy in Bdiam
γ : sketch of the proof 2/3

Proposition

Let Φ ∈ Bdiam
γ with γ > 2d . Then

∀t ∈ R lim
Λ↑Zd

1
|Λ|∥α

t
Φ(HΛ(Φ))− αt

Φ,Λ(HΛ(Φ))∥ = 0.

Let Λ be a cube and Λ0 a sub-cube. De�ne H̃Λ,Λ0(Φ) := HΛ(Φ)− HΛ0(Φ).

1
|Λ|

∥αt
Φ(HΛ(Φ))− αt

Φ,Λ(HΛ(Φ))∥

≤ ∥αt
Φ(HΛ0(Φ))−αt

Φ,Λ(HΛ0(Φ))∥+∥αt
Φ(H̃Λ,Λ0(Φ))∥+∥αt

Φ,Λ(H̃Λ,Λ0(Φ))∥

≤

1
|Λ|

∥αt
Φ(HΛ0(Φ))−αt

Φ,Λ(HΛ0(Φ))∥+ 2 ∥H̃Λ,Λ0(Φ)∥

≤

1
|Λ|

∥HΛ0(Φ)∥ ct |Λ0|(1+ dist(Λ0,Zd \ Λ))−γ+d+ϵ + 2 ∥H̃Λ,Λ0(Φ)∥ (Lieb-Robinson bound)

≤ |Λ0| ∥Φ∥s ct |Λ0|(1+ dist(Λ0,Zd \ Λ))−γ+d+ϵ + |Λ \ Λ0|∥Φ∥s

(because ∥HΛ0 (Φ)∥ ≤
∑

X∩Λ0 ̸=∅ ∥Φ(X )∥ ≤ |Λ0|
∑

X∋0 ∥Φ(X )∥ ≤ |Λ0|∥Φ∥s)

Can we construct families Λ, Λ0 such that limΛ↑Zd . . . = 0?
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γ : sketch of the proof 2/3
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CLs for energy in Bdiam
γ : sketch of the proof 2/3
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→ 1

∥Φ∥s ct |Λ0|(1+ dist(Λ0,Zd \ Λ))−γ+d+ϵ︸ ︷︷ ︸
→ 0

+ |Λ\Λ0|
|Λ|︸ ︷︷ ︸
→ 0

∥Φ∥s
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CLs for energy in Bdiam
γ : sketch of the proof 3/3

Lemma.

Assume γ > 2d . Let Λ be a family of cubes such that Λ ↑ Zd and denote the side of Λ by LΛ.

There exists p ∈ (0, 1) such that the sub-cubes Λ0 = (1− L−p
Λ )Λ satisfy

(i) lim
Λ↑Zd

|Λ\Λ0|
|Λ| = 0,

(ii) lim
Λ↑Zd

|Λ0|(1+ dist(Λ0,Zd \ Λ))−γ+d+ϵ = 0 for any 0 < ϵ < γ − 2d .

(ii) Since |Λ0| =
(
1− L−p

Λ

)d
Ld
Λ and dist(Λ0,Zd \ Λ) = L1−p

Λ , we obtain

|Λ0|(1+ dist(Λ0,Zd \ Λ))−γ+d+ϵ ≤ L
d−(1−p)(γ−d−ϵ)
Λ .

It follows that d < (1− p)(γ − d − ϵ) if 0 < p < p0 with p0 := γ−2d−ϵ
γ−d−ϵ

, so (ii) holds

=⇒ CL for speci�c energy holds for Φ ∈ Bdiam
γ with γ > 2d
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By-product: Precious Proposition

Proposition

Let Φ ∈ Bdiam
γ with γ > 2d . Then

∀t ∈ R lim
Λ↑Zd

1
|Λ|∥α

t
Φ(HΛ(Φ))− αt

Φ,Λ(HΛ(Φ))∥ = 0.

Precious Proposition

Let Φ ∈ Bdiam
γ with γ > 2d and Ψ ∈ Bs. Then

∀t ∈ R lim
Λ↑Zd

1
|Λ|∥α

t
Φ(HΛ(Ψ))− αt

Φ,Λ(HΛ(Ψ))∥ = 0.

� As we have just seen, it is needed for CL for speci�c energy (with Ψ = Φ)

� Recall this is one of the conditions de�ning the SD+ property

� It also intervenes in the partial solution to Conjecture SD
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Conjecture SD

Let Φ,Ψ0 ∈ Bsd. Fix t ∈ R and de�ne for Λ ∈ F

Ht(Λ) := e
−itHΦ(Λ)HΨ0

(Λ)eitHΦ(Λ).

� Generates dynamics s 7→ α−t
Φ ◦ αs

Ψ0
◦ αt

Φ

� The corresponding translation-inv. interaction Ψt is uniquely de�ned but it need not be even in Bb

� But its pressure and speci�c energy exist and can be easily computed

Partial solution to Conjecture SD [Jak²i¢�Pillet�S�Tauber'25]

Let Φ ∈ Bdiam
γ for γ > 2d and Ψ0 ∈ Bdiam

γ′ for γ′ > d . Then (Φ,Ψ0) has SD property for all t ∈ R, i.e.

Wt(Λ) exists for all Λ ∈ F and lim
Λ↑Zd

1
|Λ|Wt(Λ) = 0

Key tool in the proof is the Lieb-Robinson bound via Precious Proposition
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Conjecture SD+

Refresher on SD+ property

We say (Φ,Ψ0) has SD+ property if it has SD property and in addition the following holds for |t| < ϵ:

(1) (i± δt)Uloc is dense in U , where δt(A) = i [Ht(Λ) +Wt(Λ),A] for A ∈ UΛ.

(2) limΛ↑Zd
1
|Λ|∥α

t
Φ(HΨ0

(Λ))− αt
Φ,Λ(HΨ0

(Λ))∥ = 0

� SD property and Part (2) hold for Φ ∈ Bdiam
γ for γ > 2d and Ψ ∈ Bdiam

γ′ for γ > d .

� Part (1) is much harder, we only know it holds for pairs of �nite-range interactions:

Partial solution to Conjecture SD+ [Jak²i¢�Pillet�S�Tauber'25]

Let Φ,Ψ0 ∈ Bf . Then (Φ,Ψ0) has SD+ property (so the characterization of C via commuting dynamics holds)

Proof idea: We follow Bru-Pedra's proof that (i ± δΨ)Uloc is dense in U for Ψ ∈ Bdiam
γ with γ > d , but

we need to generalize the Lieb-Robinson bound to the case of the composite dynamics generated by δt , i.e.

instead of ∥(αs
Ψ − αs

Ψ,Λ)(A)∥ ≤ . . . we need ∥(αs − αs
Λ)(A)∥ ≤ . . . where αs = α−t

Φ ◦ αs
Ψ0

◦ αt
Φ
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How to tackle Conjecture R+SE

CL for relative entropy ⇒ Property SE

Let Ψ0 ∈ Bsd and ω ∈ Seq(Ψ0) such that (ω,Ψ0) regular. Recall that SE property means

s(ρ |ω) = s(ρ ◦ αt
Φ |ω) ∀t ∈ R ∀ρ ∈ SI

Assume CL for relative entropy: s(ρ |ω) = s(ρ ◦ αt
Φ |ω ◦ αt

Φ) ∀t ∈ R ∀ρ ∈ SI
If ω is αΦ-invariant, we recover SE property

CL for regularity ⇒ CL for relative entropy

Assume CL for regularity: (ω,Ψ0) regular ⇒ (ω ◦ αt
Φ,Ψt) regular

We check that PΨt = PΨ0
and EΨt = α−t

Φ (EΨ0
). Thus (ρ ◦ αt

Φ)(EΨt ) = (ρ ◦ αt
Φ)(α

−t
Φ (EΨ0

)) = ρ(EΨ0
), so

s(ρ |ω) = −s(ρ) + ρ(EΨ0
) + PΨ0

= −s(ρ ◦ αt
Φ) + (ρ ◦ αt

Φ)(EΨt ) + PΨt = s(ρ ◦ αt
Φ |ω ◦ αt

Φ)

CL for regularity ⇒ CL for relative entropy ⇒ Property SE for αΦ-inv. ω
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CL for weak Gibbsianity

De�nition of weak Gibbsianity [Jak²i¢�Pillet�Tauber'24]

We call ω ∈ SI weak Gibbs for Ψ ∈ Bb if there exist a family of constants CΛ > 0 such that

C−1
Λ

e−HΛ(Ψ)

tr e−HΛ(Ψ)
≤ ωΛ ≤ CΛ

e−HΛ(Ψ)

tr e−HΛ(Ψ)
and lim

Λ↑Zd

logCΛ

|Λ| = 0

� We denote Swg(Ψ) := set of weak Gibbs states for Ψ

� ω ∈ Swg(Ψ) ⇒ (ω,Ψ) is regular ⇒ ω ∈ Seq(Ψ)

CL for weak Gibbsianity [Jak²i¢�Pillet�S�Tauber'25]

Assume that Φ ∈ Bf and either

(a) d ≥ 1 and Ψ0 ∈ B3r for some r > 0 and such that ∥Ψ0∥r < r , or

(b) d = 1 and Ψ0 ∈ Bf .

Then ω ∈ Swg(Ψ0) =⇒ ω ◦ αt
Φ ∈ Swg(Ψt) for |t| small enough. In Case (b) this holds for all t ∈ R.

Recall Thm: If Ψ0 ∈ Br with ∥Ψ0∥r < r , or Ψ0 ∈ Bf in d = 1, then

ω ∈ Seq(Ψ0) ⇔ (ω,Ψ0) regular ⇔ ω ∈ Swg(Ψ0) [Jak²i¢-Pillet-Tauber'24]

Hence, in this context: CL for weak Gibbsianity = CL for regularity, and Conjecture R holds!
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Partial solution to Conjecture R+SE

CL for weak Gibbsianity = CL for regularity ⇒ CL for relative entropy ⇒ Property SE for αΦ-inv. ω

CL for relative entropy [Jak²i¢�Pillet�S�Tauber'25]

Under the same assumptions as CL for weak Gibbsianity:

∀ρ ∈ SI s(ρ |ω) = s(ρ ◦ αt
Φ |ω ◦ αt

Φ) for |t| < T0 (in dim one T0 = ∞)

If in addition ω is αΦ-invariant, one can take T0 = ∞. (Because then ω ◦ αt
Φ = ω ∈ Swg(Ψ0) for all t ∈ R.)

Partial solution to Conjecture R+SE [Jak²i¢�Pillet�S�Tauber'25]

Conjecture R+SE holds under the same assumptions as CL for weak Gibbsianity, provided that ω is αt
Φ-inv

CL for regularity/weak Gibbsianity ⇒ CL for relative entropy ⇒ Conjecture R+SE

(small time) (small time) (all times for αΦ-invariant state ω)

Recall we apply R+SE to ω+ ∈ S+(ω,Φ), which is αΦ-invariant!
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State of the art for Conjectures

Basic CLs for speci�c energy and entropy

Hold for either

(a) Φ ∈ Br with r > 0, or

(b) Φ ∈ Bdiam
γ with γ > 2d .

Conjecture SD

Holds for Φ ∈ Bdiam
γ with γ > 2d and Ψ ∈ Bdiam

γ′ with γ′ > d .

Conjecture SD+

Holds for Φ,Ψ ∈ Bf .

Conjecture R+SE

Holds for Φ ∈ Bf and either

(a) d ≥ 1 and Ψ ∈ B3r for some r > 0 and such that ∥Ψ∥r < r , or

(b) d = 1 and Ψ ∈ Bf .

and when ω is αΦ-invariant.
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CL for weak Gibbsianity: proof overview

We work under the assumptions for CL for weak Gibbsianity. We denote ωt := ω ◦ αt
Φ

Characterization of weak Gibbsianity [Jak²i¢�Pillet�Tauber'24]

ωt ∈ Swg(Ψt) ⇐⇒ lim
Λ↑Zd

1

|Λ| log inf
A∈UΛ
A>0

ωt(A)

(ωt)−Wt (Λ)
(A)

= lim
Λ↑Zd

1

|Λ| log sup
A∈UΛ
A>0

ωt(A)

(ωt)−Wt (Λ)
(A)

= 0

Key bound [Lenci�Rey-Bellet'05]

For any A ∈ UΛ such that A > 0

exp(−∥Wt(Λ)∥ − ∥αi/2

−Wt (Λ)
(Wt(Λ))∥) ≤

ωt(A)

(ωt)−Wt (Λ)(A)
≤ exp(∥Wt(Λ)∥+ ∥αi/2(Wt(Λ))∥)

Recall the SD property holds: limΛ↑Zd
1
|Λ|∥Wt(Λ)∥ = 0 ∀t ∈ R

We need to show lim
Λ↑Zd

1
|Λ|∥α

i/2(Wt(Λ))∥ = 0 and lim
Λ↑Zd

1
|Λ|∥α

i/2

−Wt (Λ)
(Wt(Λ))∥ = 0 (at least for small time)
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CL for weak Gibbsianity: Ruelle's bound

Ruelle's bound ('69)

Let A ∈ Uloc and Ψ ∈ Br . The map R ∋ s 7→ αs
Ψ(A) ∈ U extends analytically to the strip | Im z | < r

2∥Ψ∥r .

For any z in this strip ∥αz
Ψ(A)∥ ≤ ∥A∥er|suppA|Cz,Ψ with Cz,Ψ = (1− 2

r
∥Ψ∥r | Im z |)−1.

∥αz(A)∥ = ∥αz
Ψ0

◦ αt
Φ(A)∥

≤
∞∑
n=0

|t|n

n!

∑
Y1,...,Yn⊂Zd

∥∥αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]]
∥∥

/ bound the commutator

≤ ∥αz
Ψ0

(A)∥
∞∑
n=0

(2|t|)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥αz
Ψ0

(Φ(Yi ))∥

/ use Ruelle's bound for Ψ0

≤ Cz,Ψ0
∥A∥er|suppA|

∞∑
n=0

(2|t|er(range Φ)dCz,Ψ0
)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥Φ(Yi )∥

/ Ruelle's lemma

≤ Cz,Ψ0
∥A∥e2r|suppA|(1− |t|/T0)

−1 with T0 =
(
2
r
∥Φ∥rer(range Φ)dCz,Ψ0

)−1

αz
Ψ0

◦

αt
Φ(A) =

∞∑
n=0

(it)n

n!

∑
Y1,...,Yn⊂Zd

αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]] Baker-Campbell-Hausdor� Formula

47



CL for weak Gibbsianity: Ruelle's bound

Ruelle's bound ('69)

Let A ∈ Uloc and Ψ ∈ Br . The map R ∋ s 7→ αs
Ψ(A) ∈ U extends analytically to the strip | Im z | < r

2∥Ψ∥r .

For any z in this strip ∥αz
Ψ(A)∥ ≤ ∥A∥er|suppA|Cz,Ψ with Cz,Ψ = (1− 2

r
∥Ψ∥r | Im z |)−1.

∥αz(A)∥ = ∥αz
Ψ0

◦ αt
Φ(A)∥

≤
∞∑
n=0

|t|n

n!

∑
Y1,...,Yn⊂Zd

∥∥αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]]
∥∥

/ bound the commutator

≤ ∥αz
Ψ0

(A)∥
∞∑
n=0

(2|t|)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥αz
Ψ0

(Φ(Yi ))∥

/ use Ruelle's bound for Ψ0

≤ Cz,Ψ0
∥A∥er|suppA|

∞∑
n=0

(2|t|er(range Φ)dCz,Ψ0
)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥Φ(Yi )∥

/ Ruelle's lemma

≤ Cz,Ψ0
∥A∥e2r|suppA|(1− |t|/T0)

−1 with T0 =
(
2
r
∥Φ∥rer(range Φ)dCz,Ψ0

)−1

αz
Ψ0

◦ αt
Φ(A) =

∞∑
n=0

(it)n

n!

∑
Y1,...,Yn⊂Zd

αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]] Baker-Campbell-Hausdor� Formula

47



CL for weak Gibbsianity: Ruelle's bound

Ruelle's bound ('69)

Let A ∈ Uloc and Ψ ∈ Br . The map R ∋ s 7→ αs
Ψ(A) ∈ U extends analytically to the strip | Im z | < r

2∥Ψ∥r .

For any z in this strip ∥αz
Ψ(A)∥ ≤ ∥A∥er|suppA|Cz,Ψ with Cz,Ψ = (1− 2

r
∥Ψ∥r | Im z |)−1.

∥αz(A)∥ = ∥αz
Ψ0

◦ αt
Φ(A)∥ ≤

∞∑
n=0

|t|n

n!

∑
Y1,...,Yn⊂Zd

∥∥αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]]
∥∥

/ bound the commutator

≤ ∥αz
Ψ0

(A)∥
∞∑
n=0

(2|t|)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥αz
Ψ0

(Φ(Yi ))∥

/ use Ruelle's bound for Ψ0

≤ Cz,Ψ0
∥A∥er|suppA|

∞∑
n=0

(2|t|er(range Φ)dCz,Ψ0
)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥Φ(Yi )∥

/ Ruelle's lemma

≤ Cz,Ψ0
∥A∥e2r|suppA|(1− |t|/T0)

−1 with T0 =
(
2
r
∥Φ∥rer(range Φ)dCz,Ψ0

)−1

αz
Ψ0

◦ αt
Φ(A) =

∞∑
n=0

(it)n

n!

∑
Y1,...,Yn⊂Zd

αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]] Baker-Campbell-Hausdor� Formula

47



CL for weak Gibbsianity: Ruelle's bound

Ruelle's bound ('69)

Let A ∈ Uloc and Ψ ∈ Br . The map R ∋ s 7→ αs
Ψ(A) ∈ U extends analytically to the strip | Im z | < r

2∥Ψ∥r .

For any z in this strip ∥αz
Ψ(A)∥ ≤ ∥A∥er|suppA|Cz,Ψ with Cz,Ψ = (1− 2

r
∥Ψ∥r | Im z |)−1.

∥αz(A)∥ = ∥αz
Ψ0

◦ αt
Φ(A)∥ ≤

∞∑
n=0

|t|n

n!

∑
Y1,...,Yn⊂Zd

∥∥αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]]
∥∥

/ bound the commutator

≤ ∥αz
Ψ0

(A)∥
∞∑
n=0

(2|t|)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥αz
Ψ0

(Φ(Yi ))∥

/ use Ruelle's bound for Ψ0

≤ Cz,Ψ0
∥A∥er|suppA|

∞∑
n=0

(2|t|er(range Φ)dCz,Ψ0
)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥Φ(Yi )∥

/ Ruelle's lemma

≤ Cz,Ψ0
∥A∥e2r|suppA|(1− |t|/T0)

−1 with T0 =
(
2
r
∥Φ∥rer(range Φ)dCz,Ψ0

)−1

αz
Ψ0

◦ αt
Φ(A) =

∞∑
n=0

(it)n

n!

∑
(Y1,...,Yn)
chained to A

αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]] Baker-Campbell-Hausdor� Formula

47



CL for weak Gibbsianity: Ruelle's bound

Ruelle's bound ('69)

Let A ∈ Uloc and Ψ ∈ Br . The map R ∋ s 7→ αs
Ψ(A) ∈ U extends analytically to the strip | Im z | < r

2∥Ψ∥r .

For any z in this strip ∥αz
Ψ(A)∥ ≤ ∥A∥er|suppA|Cz,Ψ with Cz,Ψ = (1− 2

r
∥Ψ∥r | Im z |)−1.

∥αz(A)∥ = ∥αz
Ψ0

◦ αt
Φ(A)∥ ≤

∞∑
n=0

|t|n

n!

∑
(Y1,...,Yn)
chained to A

∥∥αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]]
∥∥

/ bound the commutator

≤ ∥αz
Ψ0

(A)∥
∞∑
n=0

(2|t|)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥αz
Ψ0

(Φ(Yi ))∥

/ use Ruelle's bound for Ψ0

≤ Cz,Ψ0
∥A∥er|suppA|

∞∑
n=0

(2|t|er(range Φ)dCz,Ψ0
)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥Φ(Yi )∥

/ Ruelle's lemma

≤ Cz,Ψ0
∥A∥e2r|suppA|(1− |t|/T0)

−1 with T0 =
(
2
r
∥Φ∥rer(range Φ)dCz,Ψ0

)−1

αz
Ψ0

◦ αt
Φ(A) =

∞∑
n=0

(it)n

n!

∑
(Y1,...,Yn)
chained to A

αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]] Baker-Campbell-Hausdor� Formula

47



CL for weak Gibbsianity: Ruelle's bound

Ruelle's bound ('69)

Let A ∈ Uloc and Ψ ∈ Br . The map R ∋ s 7→ αs
Ψ(A) ∈ U extends analytically to the strip | Im z | < r

2∥Ψ∥r .

For any z in this strip ∥αz
Ψ(A)∥ ≤ ∥A∥er|suppA|Cz,Ψ with Cz,Ψ = (1− 2

r
∥Ψ∥r | Im z |)−1.

∥αz(A)∥ = ∥αz
Ψ0

◦ αt
Φ(A)∥ ≤

∞∑
n=0

|t|n

n!

∑
(Y1,...,Yn)
chained to A

∥∥αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]]
∥∥ / bound the commutator

≤ ∥αz
Ψ0

(A)∥
∞∑
n=0

(2|t|)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥αz
Ψ0

(Φ(Yi ))∥

/ use Ruelle's bound for Ψ0

≤ Cz,Ψ0
∥A∥er|suppA|

∞∑
n=0

(2|t|er(range Φ)dCz,Ψ0
)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥Φ(Yi )∥

/ Ruelle's lemma

≤ Cz,Ψ0
∥A∥e2r|suppA|(1− |t|/T0)

−1 with T0 =
(
2
r
∥Φ∥rer(range Φ)dCz,Ψ0

)−1

αz
Ψ0

◦ αt
Φ(A) =

∞∑
n=0

(it)n

n!

∑
(Y1,...,Yn)
chained to A

αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]] Baker-Campbell-Hausdor� Formula
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CL for weak Gibbsianity: Ruelle's bound

Ruelle's bound ('69)

Let A ∈ Uloc and Ψ ∈ Br . The map R ∋ s 7→ αs
Ψ(A) ∈ U extends analytically to the strip | Im z | < r

2∥Ψ∥r .

For any z in this strip ∥αz
Ψ(A)∥ ≤ ∥A∥er|suppA|Cz,Ψ with Cz,Ψ = (1− 2

r
∥Ψ∥r | Im z |)−1.

∥αz(A)∥ = ∥αz
Ψ0

◦ αt
Φ(A)∥ ≤

∞∑
n=0

|t|n

n!

∑
(Y1,...,Yn)
chained to A

∥∥αz
Ψ0

[Φ(Yn) . . . [Φ(Y2), [Φ(Y1),A]]]
∥∥ / bound the commutator

≤ ∥αz
Ψ0

(A)∥
∞∑
n=0

(2|t|)n

n!

∑
(Y1,...,Yn)
chained to A

n∏
i=1

∥αz
Ψ0

(Φ(Yi ))∥ / use Ruelle's bound for Ψ0

≤ Cz,Ψ0
∥A∥er|suppA|

∞∑
n=0

(2|t|er(range Φ)dCz,Ψ0
)n
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(Y1,...,Yn)
chained to A
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∥Φ(Yi )∥

/ Ruelle's lemma

≤ Cz,Ψ0
∥A∥e2r|suppA|(1− |t|/T0)
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(
2
r
∥Φ∥rer(range Φ)dCz,Ψ0

)−1

∥αz
Ψ0

(Φ(Yi ))∥ ≤ ∥Φ(Yi )∥er|Yi |Cz,Ψ0
≤ ∥Φ(Yi )∥er(range Φ)dCz,Ψ0

Ruelle's bound & Φ ∈ Bf
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CL for weak Gibbsianity: Ruelle's bound
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CL for weak Gibbsianity: Ruelle's bound vs. perturbed dynamics

Perturbed dynamics is much more problematic. Note that αs
−WΛ(t)

(A) = αs
Zd\Λ ◦ αs

Λ(A).

If we applied the previous result:

∥αs
Zd\Λ(α

s
Λ(A))∥ ≤ ct∥αs

Λ(A)∥ exp(2r |supp αs
Λ(A)|) ≤ ct∥αs

Λ(A)∥ exp(2r |suppA ∪ Λ|)

Instead of exp(|suppA ∪ Λ|) we should see

exp(|(suppA ∪ Λ)∩ (Zd \ Λ)|) ≤ exp(|suppA|)

Conclusion

We need a generalization of Ruelle's bound for restricted dynamics αs
K = α−t

Φ|K
◦ αs

Ψ0|K ◦ αt
Φ|K , K ⊂ Zd .
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CL for weak Gibbsianity: Ruelle's bound generalized

Let K ⊂ Zd and A ∈ Uloc. Recall that α
s
K = α−t

Φ|K
◦ αs

Ψ0|K ◦ αt
Φ|K .

Ruelle's bound generalized [Jak²i¢�Pillet�S�Tauber'25]

Assume Ψ ∈ Br . The map

R ∋ s 7→ αs
Ψ|K (A) ∈ U

has an analytic extension to the strip | Im z | < r
2∥Ψ∥r . For any z in this strip

∥αz
Ψ|K (A)∥ ≤ ∥A∥ exp(r |suppA ∩ K |)Cz,Ψ with Cz,Ψ = (1− 2

r
∥Ψ∥r | Im z |)−1.

Ruelle's bound for composite dynamics [Jak²i¢�Pillet�S�Tauber'25]

Assume Ψ0 ∈ B3r such that ∥Ψ0∥r < r and Φ ∈ Bf . Set R = rangeΦ and T0 =
(
2
r
∥Φ∥rCz,Ψ0

erR
d )−1

.

For all |t| < T0 the map
R ∋ s 7→ αs

K (A)

has an analytic extension to the strip | Im z | < r
2∥Ψ0∥r . For any z in this strip

∥αz
K (A)∥ ≤ ∥A∥ exp(2r |suppA ∩ K |)Cz,Ψ0

(1− |t|/T0)
−1.
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CL for weak Gibbsianity: Ruelle's bound generalized
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CL for weak Gibbsianity: Araki's bound in dim = 1

Let Ψ ∈ Bf and A ∈ Uloc. De�ne

Fn(x) := exp
(
(n − R + 1)x + 2

R∑
r=1

exp(rx)− 1

r

)
with R := rangeΨ

Araki's bound ('69)

The map R ∋ s 7→ αs
Ψ(A) has an analytic extension to the whole complex plane, and for any z ∈ C

∥αz
Ψ(A)∥ ≤ Fn(CΨ|z |)∥A∥,

where n = max{diam(suppA),R − 1} and CΨ = 2(R + 1)∥Ψ∥s

Araki's bound generalized [Jak²i¢�Pillet�S�Tauber'25]

Let K⊂ Z. Then R ∋ s 7→ αs
Ψ|K (A) has an analytic extension to the whole complex plane and for any z ∈C

∥αz
Ψ|K (A)∥ ≤ Fn(CΨ|z |)∥A∥,

where n = max{diam(suppA ∩ K),R − 1} and CΨ = 2(R + 1)∥Ψ∥s
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CL for weak Gibbsianity: proof recap

Characterization & Key bound [Jak²i¢�Pillet�Tauber'24] & [Lenci�Rey-Bellet'05]

For any A ∈ UΛ such that A > 0

− 1
|Λ|∥Wt(Λ)∥ − 1

|Λ|∥α
i/2

−Wt (Λ)
(Wt(Λ))∥ ≤ 1

|Λ| log
ωt(A)

(ωt)−Wt (Λ)(A)
≤ 1

|Λ|∥Wt(Λ)∥+ 1
|Λ|∥α

i/2(Wt(Λ))∥

Then ωt ∈ Swg(Ψt) if both bounds go to zero as Λ ↑ Zd .

� We know the SD property holds: lim
Λ↑Zd

1
|Λ|∥Wt(Λ)∥ = 0,

� Using Ruelle/Araki generalized bounds for composite dynamics we get

lim
Λ↑Zd

1
|Λ|∥α

i/2(Wt(Λ))∥ = 0 and lim
Λ↑Zd

1
|Λ|∥α

i/2

−WΛ(t)
(Wt(Λ))∥ = 0.

CL for weak Gibbsianity holds

ωt ∈ Swg(Ψt) for

(a) |t| < T0 if Ψ ∈ B3r with ∥Ψ∥r < r , and Φ ∈ Bf (Ruelle's bound)

(b) t ∈ R if d = 1 and Ψ,Φ ∈ Bf (Araki's abound)
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Back to Approach to Thermal Equilibrium

Let ω ∈ SI and Φ ∈ Bsd.

Theorem Jak²i¢, Pillet, S, Tauber '25

Assume that Seq(β∗Φ) = {νeq} with (νeq, β∗Φ) regular, and that ω is admissible for νeq.

For ω+ ∈ S+(ω,Φ), the following statements are equivalent:

(1) ω+ = νeq

(2) ω+ ∈ Seq(Ψ+) with Ψ+ ∈ Bsd such that (ω+,Ψ+) is regular, and EΨ+ ∈ C.

� Recall Ψ+ ∈ Bsd is a minimal physicality requirement.

� If Conjecture R holds, then (ω+,Ψ+) is regular.

� If either Conjecture SD or Conjecture R+SE holds, then EΨ+ ∈ C.

Thus, assuming the conjectures and a physically relevant setting, Approach to Thermal Equilibrium follows!

Key questions now:

� When do these conjectures hold (if at all...)?

� What about SD+?
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ATE in non-integrable systems



ATE in non-integrable systems

Let ω ∈ SI and Φ ∈ Bsd.

Theorem Jak²i¢, Pillet, S, Tauber '25

Assume Seq(β∗Φ) = {νeq} with (νeq, β∗Φ) regular, and EΦ is the unique constant of motion (up to ∼).

Let ω+ ∈ S+(ω,Φ) and assume that ω+ ∈ Seq(Ψ+) with Ψ+ ∈ Bsd and EΨ+ ∈ C. Then ω+ = νeq.

� Recent results proving that non-integrability, i.e., unique constant of motion, is generic for a large class

of models: [Shiraishi'19], [Chiba'24], [Yamaguchi, Chiba, Shiraishi'24], [Chiba'25], [Shiraishi, Tasaki'25] & more

� Characterization of C via Property SD+ allows us to connect with these results and prove that the

mixed-�eld Ising chain has a unique constant of motion.

Plan of the last talk

1. JS proof strategy & results for the Ising chain

2. Connecting the two setups & adapting the proof

3. Summary of JS results for other models
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Overview of JS method

& results for Ising chain



JS-Constants of Motion

� Consider Λ0 = {1, · · · ,N} with periodic boundary condition. For S ⊂ Λ0 set D(S) = maxi,j∈S |i − j |per
� To each site i ∈ Λ0 attach Hi = C2, then HΛ0 = ⊗i∈Λ0Hi and UΛ0 = bounded operators on HΛ0

� Xi ,Yi ,Zi denote the elements of UΛ0 acting as the usual Pauli matrices on site i and as I elsewhere.

We consider Hamiltonians of the form

H =
N∑
i=1

(JXXiXi+1 + JYYiYi+1 + JZZiZi+1) +
N∑
i=1

(hXXi + hYYi + hZZi ),

where JX , JY , JZ , hX , hY , hZ are real constants independent of i , and N + 1 is identi�ed with 1.

De�nition: JS-Constants of Motion

We say that Q ∈ UΛ0 is a JS-Constant of Motion (JS-CM) if [H,Q] = 0.

Examples: I and H and all (linear combinations of) spectral projections of H.

To get physically relevant results we introduce a locality requirement on JS-CM.
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Locality requirement on JS-CM

We denote by PΛ0 the set of all strings of Pauli basis matrices acting on Λ0:

PΛ0 =
{
A =

N⊗
i=1

Ai where Ai ∈ {Xi ,Yi ,Zi , I}
}

PΛ0 is a basis of UΛ0 . For A ∈ PΛ0 we de�ne suppA = {i ∈ Λ0 |Ai ̸= I} and

the diameter/length of A as D(A) = D(suppA) (respecting periodicity!)

ℓ-supported observable

For ℓ ∈ N we say that Q ∈ UΛ0 is ℓ-supported if Q =
∑

A∈PΛ0
D(A)≤ℓ

qAA, and qA ̸= 0 for some A with D(A) = ℓ.

We are interested in ℓ-supported JS-CM's. Examples: H is a 2-supported JS-CM, I is 0-supported.

We call a JS-CM local if it is ℓ-supported with ℓ ≤ N/2.
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JS results for Mixed-�eld Ising chain

Let JZ ̸= 0 and consider the Hamiltonian

H =
N∑
i=1

JZZiZi+1 +
N∑
i=1

(hXXi + hZZi ).

JS-non-integrability of mixed-�eld Ising chain Chiba'24

If hX , hZ ̸= 0, then H is the unique non-trivial local JS-CM.

That is:

� There exists no L-supported JS-CM for L = 1 or 3 ≤ L ≤ N/2.

� Every 2-supported JS-CM is a linear combination of H and I.

Completeness of JS results

If hX = 0 or hZ = 0, then for any L there exists a non-trivial L-supported JS-CM.

That is, turning on the other magnetic �eld kills all these additional local constants of motion!

Similar results hold for other well-known models (1D and beyond). Proof strategy is always the same.
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Overview of JS proof strategy [Shiraishi'19]

Setup. Suppose that Q ∈ UΛ0 is an L-supported JS-CM. We expand it in Pauli basis as

Q =
L∑

ℓ=0

∑
A∈PΛ0
D(A)=ℓ

cAA

Plugging in the formulas for Q and H,

L+1∑
ℓ=0

∑
A∈PΛ0
D(A)=ℓ

rAA = [Q,H] =
L∑

ℓ=0

∑
A∈PΛ0
D(A)=ℓ

N∑
i=1

cA
(
JZ [A,ZiZi+1] + hX [A,Xi ] + hZ [A,Zi ]

)

Using [Q,H] = 0, i.e.,
rA = 0 for all A ∈ PΛ0

and comparing both sides, we get a system of linear equations for cA.

Step 1. If 3 ≤ L ≤ N/2, then cA = 0 for all A such that D(A) = L, which means D(Q) ≤ L− 1, contradiction.

Step 2. Work out by hand 1-supported and 2-supported JS-CMs to complete the proof.
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JS column notation for commutators

When [A,B] = C, we say that C is generated by A and B.

For example, XiYi+1Yi+2Zi+3 in [Q, H] is generated by

[YiYi+1Yi+2Zi+3, Zi ] = 2iXiYi+1Yi+2Zi+3

[XiYi+1Yi+2Yi+3,Xi+3] = 2iXiYi+1Yi+2Zi+3

[XiYi+1Xi+2, Zi+2Zi+3] = −2iXiYi+1Yi+2Zi+3

We express these commutators as

term from Q

term from H

term from [Q , H]/(2i)

Y Y Y Z

Z

X Y Y Z

X Y Y Y

X

X Y Y Z

X Y X

−Z Z

X Y Y Z

These relations allow us to write the following linear equation

hZcYYYZ + hX cXYYY − JZcXYX + . . . = rXYYZ = 0
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One example of JS reasoning

Let L ≥ 2 and consider a string A = A1
i · · ·AL

i+L−1 ∈ PΛ0 of length L appearing in Q =
∑L

ℓ=0

∑
A∈PΛ0
D(A)=ℓ

cAA

We show cA = 0 for several classes of strings, depending on their endpoints.

Case 1. If (A1,AL) = (X ,Y ) then cA = 0. We note that

X A2 · · · AL−1 Y

Z Z

X A2 · · · AL−1 X Z

The generated string XA2 · · ·AL−1XZ has length L+ 1. Note there is no other way to generate it! This gives

JZc
L
XA2···AL−1Y = rL+1XA2···AL−1XZ .

Since rL+1
XA2···AL−1XZ

= 0 and JZ ̸= 0, we get cLXA2···AL−1Y = 0 as claimed.

Analogous proofs for strings of length L with endpoints (X ,X ), (Y ,Y ), (Y ,X ).
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One example of JS reasoning

Case 2. Assume (A1,AL) = (Z ,X ). We have

Z A2 · · · AL−1 X

X

Y A2 · · · AL−1 X

X A2 · · · AL−1 X

−Z

Y A2 · · · AL−1 X

Y A2 · · · AL−1 Y

Z

Y A2 · · · AL−1 X

� Since the endpoints YA2 · · ·AL−1X are both non-Z , this string cannot arise via the action of ZZ .

� However, the action of X or Z inside the string is possible. Here's one example:

Y Z · · · AL−1 X

X

Y Y · · · AL−1 X

hX c
L
Z ···X − hZ c

L
X ···X︸ ︷︷ ︸

=0

+hZ c
L
Y ···Y︸ ︷︷ ︸

=0

+

inside action︷ ︸︸ ︷∑
hx/z c

L
Y ···X︸ ︷︷ ︸

=0

= rLY ···X = 0

� So strings of length L with endpoints (Z ,X ) and (X ,Z) also vanish. Still remain: (Z ,Z), (Z ,Y ), (Y ,Z)

� We continue until we show all of them vanish, hence D(Q) < L.

� The tricky part is to �nd the optimal order in which we consider and eliminate various types of cA as it

highly depends on the model. In this regard, we exactly follow [Chiba'24].
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=0

+

inside action︷ ︸︸ ︷∑
hx/z c

L
Y ···X︸ ︷︷ ︸

=0

= rLY ···X = 0

� So strings of length L with endpoints (Z ,X ) and (X ,Z) also vanish. Still remain: (Z ,Z), (Z ,Y ), (Y ,Z)

� We continue until we show all of them vanish, hence D(Q) < L.

� The tricky part is to �nd the optimal order in which we consider and eliminate various types of cA as it

highly depends on the model. In this regard, we exactly follow [Chiba'24].
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Reduction step

& connecting the setups
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Reduction step

We now drop the periodic boundary condition. For simplicity we consider 1D, but all transfers to higher dim.

SD+ Property: characterization of C(αΦ) via commuting dynamics Jak²i¢, Pillet, S, Tauber'25

Let Φ,Ψ ∈ Bf . Then EΨ+ ∈ C(αΦ) i� αt
Φ ◦ αs

Ψ = αs
Ψ ◦ αt

Φ.

Remark. [Araki'90] was the �rst to discuss constants of motion in the setting of in�nitely extended quantum

spin systems, de�ning them via δΦ ◦ δΨ = δΨ ◦ δΦ on Uloc. Under SD+, the two de�nitions are equivalent.

We �x the box Λ0 = {1, . . . ,N}. For some bigger box Λ we have

[HΦ(Λ), [HΨ(Λ),A]] = [HΨ(Λ), [HΦ(Λ),A]] ∀A ∈ UΛ0

and the Jacobi identity gives

[[HΨ(Λ),HΦ(Λ)],A] = 0 ∀A ∈ UΛ0

Then by standard calculations we obtain

trΛ\Λ0([HΨ(Λ),HΦ(Λ)]) = 0.
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Reduction step

By standard calculations we obtain
trΛ\Λ0([HΨ(Λ),HΦ(Λ)]) = 0.

and substitute into it
HΨ(Λ) = HΨ(Λ0) + HΨ(Λ \ Λ0) +WΨ(Λ0),

HΦ(Λ) = HΦ(Λ0) + HΦ(Λ \ Λ0) +WΦ(Λ0)

This leads to
[HΨ(Λ0),HΦ(Λ0)] +W = − trΛ\Λ0([WΨ(Λ0),WΦ(Λ0)])

where

W = trΛ\Λ0

(
[WΨ(Λ0),HΦ(Λ0)] + [HΨ(Λ0),WΦ(Λ0)] + [HΨ(Λ \ Λ0),WΦ(Λ0)] + [WΨ(Λ0),HΦ(Λ \ Λ0)]

)
.

We will now prove that W = 0, so

[HΨ(Λ0),HΦ(Λ0)] = − trΛ\Λ0([WΨ(Λ0),WΦ(Λ0)]) =: Q ′

Then we will prove that if HΨ(Λ0) is L-supported for some L, then Q′ is at most (L− 1)-supported.

Intuition: HΨ(Λ0) is a candidate for a constant of motion. Recall JS-CM condition: [Q,H] = 0.
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Proof that W = 0

Λ \ Λ0

W 1 W 2 W 3 | W 4 W 5 W 6

|

C1 C2 C3 | C4 C5 C6

site: -2 -1 0 | 1 2 3

Λ0 = {1, . . . ,N}

C := [W ,H] = [ Pauli string W stretching across the boundary of Λ0, Pauli string H fully inside or outside Λ0]

When trΛ\Λ0C ̸= 0?

� C = [W ,H] ̸= 0 only if there is an odd number of Pauli matrices �ipped to other Pauli matrices.

� Assume C ̸= 0. Then trΛ\Λ0(C
1C 2C 3|C 4C 5C 6) = tr(C 1C 2C 3)C 4C 5C 6

Note these conditions hold

� tr(C 1C 2C 3) ̸= 0 only if C 1 = C 2 = C 3 = I

for every string C given

So trΛ\Λ0 C ̸= 0 only if Pauli matrices both inside and outside Λ0 are a�ected. by some commutator!

But H acts either inside or outside, contradiction. Thus [HΨ(Λ0),HΦ(Λ0)] = − trΛ\Λ0([WΨ(Λ0),WΦ(Λ0)])
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Proof that D(Q ′) ≤ L− 1

Λ \ Λ0

W 1 W 2 W 3 | W 4 W 5 W 6

W̃ 1 W̃ 2 W̃ 3 | W̃ 4 W̃ 5 W̃ 6

C1 C2 C3 | C4 C5 C6

Λ0 = {1, . . . ,N}

Suppose HΨ(Λ) is L-supported for some L ∈ N. We claim that

D(Q ′) ≤ L− 1 for Q ′ := trΛ\Λ0([WΦ(Λ0),WΨ(Λ0)])

Consider

C := [W , W̃ ] = [ Pauli string W across the boundary of Λ0, Pauli string W̃ across the boundary of Λ0]

Recall that trΛ\Λ0 C ̸= 0 only if C = I · · · I |C iC i+1 · · ·C L with i ≥ 2.

In consequence, trΛ\Λ0(C) = C iC i+1 · · ·C L is supported inside {1, . . . , L− 1}

thus it is of the form A1 ⊗ · · · ⊗ AL−1

The other endpoint of Λ0 analogously. So trΛ\Λ0(C) is a lin. comb. of A1 · · ·AL−1 and AN−L+2 · · ·AN
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Recovering the JS proof structure

Recall Ψ ∈ Bf is a candidate for a Constant of Motion. We know that HΨ(Λ) is L-supported for L ∈ N.

Assume Φ ∈ Bf generates

HΦ(Λ0) =
N−1∑
i=1

(JXXiXi+1 + JYYiYi+1 + JZZiZi+1) +
N∑
i=1

(hXXi + hYYi + hZZi ),

Reduction step
=========⇒ [HΨ(Λ0),HΦ(Λ0)] = − trΛc

0
([WΨ(Λ0),WΦ(Λ0)])︸ ︷︷ ︸

Q′

basis exp.
=

L+1∑
ℓ=0

∑
A∈PΛ0
D(A)=ℓ

rAA

AND we know that D(Q ′) ≤ L− 1, which means rA = 0 if D(A) ∈ {L, L+ 1}.

Recall in JS setup we have rA = 0 for all A. Here we have less, but we also know the structure of Q ′:

Crucial properties of Q′

D(Q ′) ≤ L− 1 and Q ′ is a linear comb. of the boundary-touching strings A1 · · ·AL−1 and AN−L+2 · · ·AN
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Mixed-�eld Ising chain is trivially admissible

Theorem. Jak²i¢, Pillet, S, Tauber'25

Let Φ ∈ Bf generate HΦ(Λ0) =
N−1∑
i=1

JZZiZi+1 +
N∑

x=1

(hXXi + hZZi ) with hX , hZ ̸= 0. Then C(αΦ) = {EΦ}.

Step 1. (As in JS, be careful about the boundary)

Assume 3 ≤ L ≤ N
2
. Using rA = 0 if D(A) ∈ {L, L+ 1}, we show cA = 0 for every string A of length L;

hence, D(HΨ(Λ0)) ≤ L− 1. This contradicts the assumption that HΨ(Λ0) is L-supported.

Miraculously, the JS proof only uses rA = 0 for A of length L and L+ 1, so we can follow it.

We just need some technical tweaks due to boundary.

Step 2. (Extra knowledge about Q' needed, then as in JS)

We investigate by hand the cases L = 1 and L = 2, showing that HΨ(Λ0) = HΦ(Λ0) (up to equivalence)

Here the JS proof uses the full strength of its assumptions, while we have less. But we can make up for it

by exploiting the properties of Q ′ derived earlier, and then we can again follow JS.
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Proof overview: Step 1

Step 1.

We assume 3 ≤ L ≤ N/2 and for a string A of length L show:

(i) cA = 0 if A is not of the form Z · · ·Y or Y · · ·Z or Z · · ·Z .

(ii) cA = 0 if A is the form Z · · ·Y or Y · · ·Z .

(iii) cA = 0 if A is the form Z · · ·Z .
This contradicts the assumption that HΨ(Λ0) is L-supported. Hence HΨ(Λ0) is at most 2-supported

We follow very closely the JS proof but we have to be careful about the boundary:

� Some equations do not hold for the boundary-touching strings as there is no Z0Z1 nor ZNZN+1 in HΦ(Λ0)

� Shifting procedure: cAi = cA′
i+1

= cA′′
i+2

= . . . = cÂi+k
= 0

In JS setup, periodicity allows an unlimited number of shifts to the right.

The boundary forces us to make sure that:

� The shifting procedure works in both directions

� There is su�cient space (either to the left or to the right) for the required number of shifts.

This is where the assumption L ≤ N/2 comes from
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Proof overview: Step 2

Step 2.

We investigate by hand L = 1 and L = 2 and show that HΨ(Λ0) = αHΦ(Λ0) + βI

Step 2a. Assume L = 2. Recall Q ′ is a linear combination of A1 and AN :

[HΦ(Λ0),HΨ(Λ0)] = Q ′ = (rX1X1 + rY1Y1 + rZ1Z1) + (rXNXN + rYNYN + rZNZN) + rI I

We must show that rZ1 = rZN = 0. (Recall in JS we have Q′ = 0 automatically)

Recall that

Q ′ := − trΛc
0
([WΦ(Λ0),WΨ(Λ0)]) and WΦ(Λ0) = − 1

2
JZ (Z0Z1 + ZNZN+1)

Note there does not exist A0,A1 ∈ {X ,Y ,Z} that satisfy the following commutation relation:

A0 | A1

Z0 | Z1

I0 | Z1

where the structure is

term from WΨ(Λ0)

term from WΦ(Λ0)

term from Q'/(2i)

in consequence, rZ1 = 0 = rZN . Knowing that rZj = 0 for all j , we can follow JS proof again.
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Proof overview: Step 2

Step 2b. First, show that the only potentially non-zero coe�cients of HΨ(Λ0) are cZjZ , cZj , cXj , and cI.

We already know that for every j

cXjX = cXjY = cYjX = cYjY = cXjZ = cZjX = 0

To show that cZjY = cYjZ = cYj = 0, we use Step 2a that guarantees rZj = 0 for every j ∈ Λ0.

Namely
[Yj ,−Xj ] = (2i)Zj =⇒ −hX cYj = rZj = 0 =⇒ cYj = 0 ∀j ∈ Λ0

and

Yj

Zj Zj+1

Xj Zj+1

Yj Zj+1

Zj

Xj Zj+1

⇒ JZcYj + hZcZjYj+1 = 0

Yj+1

Zj Zj+1

Zj Xj+1

Zj Yj+1

Zj+1

Zj Xj+1

⇒ JZcYj+1 + hZcZjYj+1 = 0

Therefore cZjYj+1 = cYjZj+1 = 0 for all 1 ≤ j ≤ N − 1

Next, we show that the coe�cients are in correct proportion (this also means L = 1 is impossible):

cZjZ/JZ = cZj /hZ = cXj /hX

Indeed,
Zj Zj+1

Xj

Yj Zj+1

Xj

−Zj Zj+1

Yj Zj+1

=⇒ hX cZjZ − JZcXj = 0 i.e. cXj /hX = cZjZ/JZ

The other one is analogous. Setting α := cI and β := cXj /hX , we �nally obtain

HΨ(Λ0) = αI+ βHΦ(Λ0)
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Proof overview: Step 2
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Recap for mixed-�eld Ising chain

Theorem. Jak²i¢, Pillet, S, Tauber'25

Let Φ ∈ Bf generate HΦ(Λ0) =
N−1∑
i=1

JZZiZi+1 +
N∑

x=1

(hXXi + hZZi ) with hX , hZ ̸= 0. Then C(αΦ) = {EΦ}.

� Main di�erence wrt JS: de�nition of Constants of Motion. JS-CM is stronger than our-CM.

Also, periodic vs. open boundary condition, which entails technical tweaks.

� Open boundary condition are discussed in [Chiba'24] under JS-CM.

� Step 1 of JS proof does not use the full strength of JS-CM:

While assuming Q ′ = 0, it only uses D(Q ′) ≤ L− 1 (which is exactly what our-CM provides).

� Step 2 of JS proof uses the full strength of JS-CM:

We catch up by using the explicit formula for Q ′ = − trΛc
0
([WΦ(Λ0),WΨ(Λ0)]).
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Other models



Summary of JS results: rank 2 models Yamaguchi, Chiba, Shiraishi'24

Back to periodic boundary condition. Let JX , JY ̸= 0 and consider

HΦ(Λ0) =
N∑
i=1

(JXXiXi+1 + JYYiYi+1) +
N∑
i=1

(hXXi + hYYi ).

� If hX = hY = 0, the XY model has in�nitely many (non-trivial local) JS-CM [Lieb, Schultz, Mattis'61]

� If hX ̸= 0 or hY ̸= 0:

� If JY = −JX (hY /hX )
2 and N is even, then there are two JS-CMs:

HΦ(Λ0) and Q =
N∑
i=1

(−1)i (hXXi + hYYi )(hXXi+1 + hYYi+1)

� Otherwise, HΦ(Λ0) is the unique JS-CM
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Summary of JS results: rank 3 models Yamaguchi, Chiba, Shiraishi'24

Back to periodic boundary condition. Let JX , Jy , JZ ̸= 0 and consider

HΦ(Λ0) =
N∑
i=1

(JXXiXi+1 + JYYiYi+1 + JZZiZi+1) +
N∑
i=1

(hXXi + hYYi + hZZi ).

� If JX = JY = JZ , the XXX model has in�nitely many JS-CMs (for any hX , hY , hZ ) [Bethe'31]

� If JX = JY ̸= JZ :

� if hX = hY = 0, the XXZ model has in�nitely many JS-CMs [C.-N. Yang, C.-P. Yang'66]

� if hX ̸= 0 or hY ̸= 0, then HΦ(Λ0) is the unique JS-CM

� If JX , JY , JZ are all di�erent:

� if hX = hY = hZ = 0, the XYZ model has in�nitely many JS-CMs [Baxter'71]

� if JX = −JY and hZ ̸= 0, there are two JS-CMs: HΦ(Λ0) and Q =
∑N

i=1(−1)ihZZi

� if at least one of hX , hY , hZ is non-zero, HΦ(Λ0) is the unique JS-CM

In particular, among such chains there is no missing integrable system that awaits to be discovered.
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Summary of JS results: other models

Higher dim Ising model Chiba'25

Let Λ0 = {1, . . . ,N}d . Assume JZ ̸= 0 and hX ̸= 0 and consider

HΦ(Λ0) =
∑
i,j∈Λ0
|i−j|=1

JZZiZj +
∑
i∈Λ0

(hXXi + hZZi ).

Any local JS-CM is a linear combination of HΦ(Λ0) and I.

Higher dim Heisenberg model Shiraishi, Tasaki'25

Assume JX ̸= 0 and JY ̸= 0 and consider

HΦ(Λ0) =
∑
i,j∈Λ0
|i−j|=1

(JXXiXj + JYYiYj + JZZiZj) +
∑
i∈Λ0

(hXXi + hYYi + hZZi ).

Any local JS-CM is a linear combination of HΦ(Λ0) and some one-body operator and I.

Other 1D models considered by JS

• Heisenberg model with next-nearest-neighbor interaction [Shiraishi'24]

• PXP model [Park, Lee'24]

• Spin-1 model with bilinear biquadratic interactions [Park, Lee'24], [Hokkyo, Yamaguchi, Chiba'24]
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Outlook

� We keep working on getting all the JS results in our setting:

� So far, only the Ising chain has been written down with all details

� Next target is the XY chain � JS have not considered open boundary condition for it

� Conjecture: generically, �nite-range interactions have no non-trivial local constants of motion

� We are also looking at what happens to the dynamics when a transverse �eld is added to

the classical Ising chain, which causes all the constants of motion to instantly disappear

� Remark: The course has only covered spin systems, but the results extend to lattice fermionic systems.
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