Approach to equilibrium in translation-invariant quantum spin systems

Anna Szczepanek (CY Université Cergy Paris & Jagiellonian University in Kraków) joint work Vojkan Jakšić, Claude-Alain Pillet, and Clément Tauber

Outline

Part 1: Main Results

- Refresher on quantum spin systems
- Approach to thermal equilibrium
- Constrained approach to equilibrium

Part 2: Main Tools

- Structural theory of constants of motion
- Dynamical conservation laws
- Partial solutions to Conjectures

Part 3: Approach to Equilibrium in non-integrable systems

- Japanese School of non-integrable systems
- Link between the two research programs
- Results for the Ising chain and other models

Quantum lattice spin systems

Quantum lattice spin systems

- Lattice \mathbb{Z}^d , family of translations $\{\tau_x\}_{x\in\mathbb{Z}^d}$, family \mathcal{F} of **finite subsets** of \mathbb{Z}^d
- Fixed Hilbert space $\mathcal{H}_0 := \mathbb{C}^N$
- $\mathcal{H}_x := \mathcal{H}_0$ for every $x \in \mathbb{Z}^d$
- $\mathcal{H}_X:=\otimes_{x\in X}\mathcal{H}_x$ for $X\in\mathcal{F}$, and $\mathcal{U}_X:=$ bounded operators on \mathcal{H}_X
- $\mathcal{U}_X \ni A \mapsto A \otimes 1_{\tilde{X} \setminus X} \in \mathcal{U}_{\tilde{X}}$ for $X \subset \tilde{X} \in \mathcal{F}$
- ullet Local observables $\mathcal{U}_{\mathrm{loc}} := igcup_{X \in \mathcal{F}} \mathcal{U}_X$
- ullet Spin C*-algebra ${\cal U}$ is the norm-completion of ${\cal U}_{
 m loc}$
- Translation invariant states: $S_{\mathrm{I}} = \{ \rho \colon \mathcal{U} \to \mathbb{C} \mid \rho \text{ positive, linear, } \rho(1) = 1 \text{ and } \rho \circ \tau_{\mathsf{x}} = \rho \ \ \forall \mathsf{x} \in \mathbb{Z}^d \}$

Interactions, local Hamiltonians, dynamics

- Interaction: family $\{\Phi(X)\}_{X\in\mathcal{F}}$ such that $\Phi(X)\in\mathcal{U}_X$ is self-adjoint.
 - We always assume translation invariance: $\tau_x(\Phi(X)) = \Phi(X + x) \ \ \forall x \in \mathbb{Z}^d \ \ \forall X \in \mathcal{F}$
- $H_{\Phi}(\Lambda) = \sum_{X \subset \Lambda} \Phi(X)$ is the **local Hamiltonian** on $\Lambda \in \mathcal{F}$
- Local dynamics on Λ:

$$\alpha_{\Phi,\Lambda}^t(A) = \mathrm{e}^{\mathrm{i}\,tH_\Phi(\Lambda)}A\mathrm{e}^{-\mathrm{i}\,tH_\Phi(\Lambda)}, \quad A \in \mathcal{U}_\Lambda$$

• We say the **(global) dynamics exists** if for all $A \in \mathcal{U}$ the limit

$$\alpha_{\Phi}^{t}(A) := \lim_{\Lambda \uparrow \mathbb{Z}^d} \alpha_{\Phi,\Lambda}^{t}(A)$$

exists and is uniform for t in compact sets, where $\Lambda \uparrow \mathbb{Z}^d$ denotes the limit over an increasing and exhaustive family of cubes in \mathbb{Z}^d centred at 0

• Time evolution of a state: $\rho_t := \rho \circ \alpha_\Phi^t$

3

Spaces of interactions

 \bullet Big space of interactions $\mathcal{B}_b = \{\Phi \ \colon \ \|\Phi\|_b < \infty\}$ where

$$\|\Phi\|_{\mathrm{b}} = \sum_{X \ni 0} \frac{\|\Phi(X)\|}{|X|}$$

 \bullet Small space of interactions $\mathcal{B}_{\rm s} = \{\Phi \,:\, \left\|\Phi\right\|_{\rm s} < \infty\}$ where

$$\left\|\Phi\right\|_{\mathrm{s}} = \sum_{X \ni 0} \left\|\Phi(X)\right\|$$

• Finite range interactions:

$$\mathcal{B}_{\mathrm{f}} = \{\Phi : \exists R \in \mathbb{N} \ \mathrm{diam}(X) > R \ \Rightarrow \ \Phi(X) = 0\}$$

We have $\mathcal{B}_f \subset \mathcal{B}_s \subset \mathcal{B}_b$, both \mathcal{B}_s and \mathcal{B}_b are Banach spaces, and \mathcal{B}_f is a dense subset of each

- α_Φ may not exist for $\Phi \in \mathcal{B}_{\mathrm{s}}$
- α_{Φ} does exist for $\Phi \in \mathcal{B}_{\mathit{f}}$

4

Gibbs variational principle and Equilibrium States

Let $\Phi \in \mathcal{B}_b$ and $\rho \in \mathcal{S}_I$. Notation: $\rho_{\Lambda} \in \mathcal{U}_{\Lambda}$ satisfies $\rho(A) = \operatorname{tr}(\rho_{\Lambda} A)$ for all $A \in \mathcal{U}_{\Lambda}$ (density matrix)

Specific entropy of ρ:

$$s(\rho) := -\lim_{\Lambda \uparrow \not\supset d} \frac{1}{|\Lambda|} \operatorname{tr}(\rho_\Lambda \log \rho_\Lambda) \in [0, \log N] \hspace{1cm} \text{It is affine \& upper semi-continuous}$$

Specific energy of Φ:

$$E_{\Phi}:=\sum_{X\ni 0}\frac{\Phi(X)}{|X|}\in \mathcal{U} \qquad \text{ It satisfies } \lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\rho(H_{\Phi}(\Lambda))=\rho(E_{\Phi}) \ \text{ for all } \rho\in\mathcal{S}_{\mathrm{I}}.$$

Pressure of Φ:

$$P(\Phi) = \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log(\operatorname{tr}(e^{-H_{\Phi}(\Lambda)})) < \infty$$

Gibbs variational principle: $P(\beta\Phi) = \sup_{\rho \in S_1} (s(\rho) - \beta \rho(E_{\Phi}))$ for inverse temperature β

Maximizers are the equilibrium states: $S_{eq}(\beta\Phi) = \{\rho \in S_I \mid P(\beta\Phi) = s(\rho) - \beta\rho(E_{\Phi})\}$

Dual variational principle: $s(\rho) = \inf_{\Phi \in \mathcal{B}_b} (P(\beta \Phi) + \beta \rho(E_{\Phi}))$

Surface energies

Surface energies for $\Lambda \in \mathcal{F}$ of an interaction Φ are defined as

$$\begin{split} W_{\Phi}(\Lambda) &= \sum_{\substack{X \cap \Lambda \neq \emptyset \\ X \cap \Lambda^c \neq \emptyset}} \Phi(X) \\ &= \lim_{\Lambda' \uparrow \mathbb{Z}^d} (H_{\Phi}(\Lambda') - H_{\Phi}(\Lambda) - H_{\Phi}(\Lambda' \setminus \Lambda)) \end{split}$$

On physical grounds, surface energies should play a central role in the study of approach to equilibrium

- ullet Surface energies may not exist for $\Phi \in \mathcal{B}_{\mathrm{b}}$
- \bullet Surface energies do exist for $\Phi \in \mathcal{B}_{\mathrm{s}}$

Proposition

Let $\Phi \in \mathcal{B}_s$. Then $\mathit{W}_\Phi(\Lambda)$ exists for every $\Lambda \in \mathcal{F}$, and $\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \mathit{W}_\Phi(\Lambda) = 0$.

6

$\mathcal{B}_{\mathrm{sd}}$ space of *physical* interactions

For $\Phi \in \mathcal{B}_{\mathrm{s}}$ consider the *-derivation $\delta_{\Phi}: \mathcal{U}_{\mathrm{loc}} o \mathcal{U}$ defined by

$$\delta_{\Phi}(A) = \sum_{X \in \mathcal{F}} [\Phi(X), A] = \lim_{\Lambda \uparrow \mathbb{Z}^d} [H_{\Phi}(\Lambda), A], \qquad A \in \mathcal{U}_{\text{loc}}$$

It is closable and we denote its closure again by $\delta_{\Phi}.$

Definition of $\mathcal{B}_{\mathrm{sd}}$

$$\mathcal{B}_{\mathrm{sd}} = \{\Phi \in \mathcal{B}_{\mathrm{s}} : \delta_{\Phi} \text{ generates dynamics } \alpha_{\Phi} \text{ on } \mathcal{U}\}$$

Theorem

 δ_{Φ} generates dynamics α_{Φ} on \mathcal{U} if and only if $(i \pm \delta_{\Phi})\mathcal{U}_{loc}$ is dense in \mathcal{U} . In that case

$$\alpha_{\Phi}^{t}(A) = \lim_{\Lambda \uparrow \mathbb{Z}^{d}} e^{itH_{\Phi}(\Lambda)} A e^{-itH_{\Phi}(\Lambda)}, \qquad A \in \mathcal{U},$$

where the limit is uniform for t in compacts.

7

$\mathcal{B}_{\mathrm{sd}}$ space of *physical* interactions

The naturalness of $\mathcal{B}_{\mathrm{sd}}$ stems also from the following result

Theorem

Suppose that $\Phi,\Psi\in\mathcal{B}_{\mathrm{sd}}$. Then the following statements are equivalent:

- ullet Φ and Ψ are equivalent to be understood intuitively for now
- $\bullet \ \mathcal{S}_{\mathrm{eq}}(\Phi) \cap \mathcal{S}_{\mathrm{eq}}(\Psi) \neq \emptyset$
- $\bullet \ \mathcal{S}_{\mathrm{eq}}(\Phi) = \mathcal{S}_{\mathrm{eq}}(\Psi)$
- $\alpha_{\Phi} = \alpha_{\Psi}$

In contrast, \mathcal{B}_{b} contains non-equivalent interactions that share an equilibrium state, which is pathological

Important classes of interactions are in $\mathcal{B}_{\mathrm{sd}}$ which we will see later on:

- ullet The well-known space of **exponentially-decaying interactions**: $\mathcal{B}^r\subset\mathcal{B}_{\mathrm{sd}}$ for r>0.
- ullet We will also work with the space of **diameter-interactions**: $\mathcal{B}_{\gamma}^{\mathrm{diam}} \subset \mathcal{B}_{\mathrm{sd}}$ for $\gamma > d$.

Regularity

Specific relative entropy of $\rho \in \mathcal{S}_I$ with respect to $\omega \in \mathcal{S}_I$ (assuming the limit exists):

$$s(
ho|\omega) := \lim_{\Lambda \uparrow \mathbb{Z}^d} rac{\mathbf{1}}{|\Lambda|} \operatorname{tr}(
ho_{\Lambda}(\log
ho_{\Lambda} - \log \omega_{\Lambda})) \geq 0$$

Definition

A pair $(\omega, \Psi) \in \mathcal{S}_I \times \mathcal{B}_{sd}$ is called **regular** if the relative entropy $s(\rho|\omega)$ exists for all $\rho \in \mathcal{S}_I$ and satisfies the **entropy balance equation**:

$$s(\rho|\omega) = -s(\rho) + \rho(E_{\Psi}) + P(\Psi).$$

- (ω, Ψ) is regular $\Longrightarrow \omega \in \mathcal{S}_{\mathrm{eq}}(\Psi)$
- R-Conjecture: (ω, Ψ) is regular for every $\Psi \in \mathcal{B}_{\mathrm{sd}}$ and $\omega \in \mathcal{S}_{\mathrm{eq}}(\Psi)$
- It is a very hard open problem involving the structural aspects of QSS.
- Thm: If $\Psi \in \mathcal{B}^r$ with $\|\Psi\|_r < r$, or $\Psi \in \mathcal{B}_{\mathrm{f}}$ in d=1, then (ω,Ψ) is regular for every $\omega \in \mathcal{S}_{\mathrm{eq}}(\Psi)$

[Jakšić, Pillet, Tauber'24]

Approach to Equilibrium

Equilibrium Steady States (ESS)

Let $\omega \in \mathcal{S}_I$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}.$ For T>0 define

$$\overline{\omega}_{\mathcal{T}} = \frac{1}{\mathcal{T}} \int_{0}^{\mathcal{T}} \omega \circ \alpha_{\Phi}^{t} \, \mathrm{d}t$$

and consider the set of Equilibrium Steady States (ESS):

$$\mathcal{S}_+(\omega,\Phi)=\{\text{weak*-limit points of }(\overline{\omega}_{\mathcal{T}})_{\mathcal{T}>0} \text{ as } \mathcal{T}\to\infty\}.$$

- $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$ iff $\omega_+ = \lim_{n \to \infty} \overline{\omega}_{\mathcal{T}_n}$ for some subsequence $\mathcal{T}_n \uparrow \infty$
- $S_+(\omega, \Phi) = \{\omega_+\}$ iff $\omega_+ = \lim_{T \to \infty} \overline{\omega}_T$
- ω_+ is α_Φ -invariant
- $\omega_+=\omega$ iff ω is $lpha_\Phi$ -invariant, which is a trivial setting (which we always exclude)

Basic Conservation Laws

We postulate the conservation of specific entropy and energy:

$$\forall \omega \in \mathcal{S}_I \ \forall t > 0 \qquad s(\omega \circ \alpha_\Phi^t) = s(\omega) \qquad \text{and} \qquad (\omega \circ \alpha_\Phi^t)(E_\Phi) = \omega(E_\Phi)$$

Fix the initial state $\omega \in \mathcal{S}_I$. For the time average we get:

$$orall T>0 \qquad s(\omega)=s(\overline{\omega}_T) \qquad ext{and} \qquad \omega(E_\Phi)=\overline{\omega}_T(E_\Phi)$$

So for any $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$:

$$s(\omega) \leq s(\omega_+)$$
 and $\omega(E_{\Phi}) = \omega_+(E_{\Phi}).$

- E_{Φ} is a **constant of motion** of the dynamics α_{Φ}
- Ruelle problem: when does $s(\omega) < s(\omega_+)$ hold?
- We will further discuss these (and other) conservation laws tomorrow.

Approach to Thermal Equilibrium – definition

Let $\omega \in \mathcal{S}_I$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$. Consider the initial specific energy $e_0 := \omega(E_{\Phi})$. We know it is preserved.

Setting the equilibrium inverse temperature eta_*

We set such β_* that for some $\nu_{\rm eq} \in \mathcal{S}_{\rm eq}(\beta_*\Phi)$ we have $\nu_{\rm eq}(E_\Phi) = e_0$, provided such β_* exists.

If such β_* exists, it is unique. If it does not exist, approach to thermal equilibrium is impossible.

Approach to Thermal Equilibrium – definition

Let $\omega \in \mathcal{S}_I$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$. Consider the initial specific energy $e_0 := \omega(\mathcal{E}_{\Phi})$. We know it is preserved.

Setting the equilibrium inverse temperature eta_*

We set such β_* that for some $\nu_{\rm eq} \in \mathcal{S}_{\rm eq}(\beta_*\Phi)$ we have $\nu_{\rm eq}(E_\Phi) = e_0$, provided such β_* exists.

If such β_* exists, it is unique. If it does not exist, approach to thermal equilibrium is impossible.

Definition of Approach to Thermal Equilibrium

The pair (ω,Φ) has the property of Approach to Thermal Equilibrium if

- (1) $S_+(\omega, \Phi) = \{\omega_+\}$
- (2) $\omega_+ \in \mathcal{S}_{eq}(\beta_*\Phi)$
 - The dynamical problem (1) can be answered only in the context of specific models.
 - We focus on the structural theory of (2), developing it for $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$.

Constants of Motion & Admissible States

Consider the real vector space $\mathcal{U}_{\mathrm{real}}$ of self-adjoint elements of $\mathcal{U}.$

Constant of Motion

We call $C \in \mathcal{U}_{\mathrm{real}}$ a constant of motion for $\Phi \in \mathcal{B}_{\mathrm{sd}}$ when

$$\rho \circ \alpha_{\Phi}^t(C) = \rho(C) \qquad \forall \rho \in \mathcal{S}_{\mathcal{I}} \ \forall t \in \mathbb{R}$$

We denote by $\mathfrak{C} = \mathfrak{C}(\alpha_{\Phi})$ the set of all constants of motion for Φ .

- There is a natural equivalence structure in C
- Recall $E_\Phi\in\mathfrak{C}$. The choice of eta_* guarantees $\omega(E_\Phi)=e_0=
 u_{\mathrm{eq}}(E_\Phi)$
- Suppose that for each $\nu_{\rm eq} \in \mathcal{S}_{\rm eq}(\beta_*\Phi)$ satisfying $e_0 = \nu_{\rm eq}(E_\Phi)$ there exists $C \in \mathfrak{C}$ such that $\omega(C) \neq \nu_{\rm eq}(C)$ Approach to Thermal Equilibrium is then impossible!

Admissible States

The initial state ω is called **admissible** for $\nu_{\rm eq} \in \mathcal{S}_{\rm eq}(\beta_*\Phi)$ when $\omega(\mathcal{C}) = \nu_{\rm eq}(\mathcal{C})$ for all $\mathcal{C} \in \mathfrak{C}$.

Approach to Thermal Equilibrium - assumptions

Let $\omega \in \mathcal{S}_I$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$. Recall we assume the basic conservation laws, in particular $E_\Phi \in \mathfrak{C}$.

Theorem

Jakšić, Pillet, S, Tauber '25

Assume that $S_{eq}(\beta_*\Phi) = \{\nu_{eq}\}$ with $(\nu_{eq}, \beta_*\Phi)$ regular, and that ω is admissible for ν_{eq} .

For $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$, the following statements are equivalent:

- (1) $\omega_+ = \nu_{\rm eq}$
- (2) $\omega_+ \in \mathcal{S}_{eq}(\Psi_+)$ with $\Psi_+ \in \mathcal{B}_{sd}$ such that (ω_+, Ψ_+) is regular, and $E_{\Psi_+} \in \mathfrak{C}$
 - Regularity of $(\nu_{eq}, \beta_* \Phi)$ and uniqueness of ν_{eq} can be assured by taking sufficiently nice Φ . Admissibility of ω is a physical constraint.
 - Minimal physicality requirement $\Psi_+ \in \mathcal{B}_{sd}$ has to be established for a specific model. (Maybe it can be proven for sufficiently nice Φ or ω ?) Either it holds or the situation is unphysical.
 - Regularity of (ω_+, Ψ_+) follows from the R-Conjecture or it can be established for a specific model.
 - ullet Conditions assuring $E_{\Psi_+}\in \mathfrak{C}$ will be discussed tomorrow.

Approach to Thermal Equilibrium - proof

(2)
$$\Rightarrow$$
 (1) We get $s(\omega_+) \geq s(
u_{
m eq})$ as follows:

$$\begin{split} s(\nu_{\rm eq}|\omega_+) &= -s(\nu_{\rm eq}) + \nu_{\rm eq}(E_{\Psi_+}) + P(\Psi_+) & \text{(regularity of } (\omega_+, \Psi_+)) \\ &= -s(\nu_{\rm eq}) + \omega(E_{\Psi_+}) + P(\Psi_+) & \text{(admissibility)} \\ &= -s(\nu_{\rm eq}) + \omega_+(E_{\Psi_+}) + P(\Psi_+) & (E_{\Psi_+} \in \mathfrak{C}) \\ &= -s(\nu_{\rm eq}) + s(\omega_+) \geq 0 & (\omega_+ \in \mathcal{S}_{\rm eq}(\Psi_+)) \end{split}$$

The opposite inequality $s(\omega_+) \leq s(
u_{ ext{eq}})$ in proven analogously

Approach to Thermal Equilibrium - proof

(2) \Rightarrow (1) We get $s(\omega_+) \geq s(
u_{
m eq})$ as follows:

$$\begin{split} s(\nu_{\rm eq}|\omega_+) &= -s(\nu_{\rm eq}) + \nu_{\rm eq}(E_{\Psi_+}) + P(\Psi_+) & \text{(regularity of } (\omega_+, \Psi_+)) \\ &= -s(\nu_{\rm eq}) + \omega(E_{\Psi_+}) + P(\Psi_+) & \text{(admissibility)} \\ &= -s(\nu_{\rm eq}) + \omega_+(E_{\Psi_+}) + P(\Psi_+) & (E_{\Psi_+} \in \mathfrak{C}) \\ &= -s(\nu_{\rm eq}) + s(\omega_+) \geq 0 & (\omega_+ \in \mathcal{S}_{\rm eq}(\Psi_+)) \end{split}$$

The opposite inequality $s(\omega_+) \leq s(
u_{
m eq})$ in proven analogously

$$\begin{split} s(\omega_{+}|\nu_{\mathrm{eq}}) &= -s(\omega_{+}) + \beta_{*}\omega_{+}(E_{\Phi}) + P(\beta_{*}\Phi) & \text{(regularity of } (\nu_{\mathrm{eq}},\beta_{*}\Phi)) \\ &= -s(\omega_{+}) + \beta_{*}\nu_{\mathrm{eq}}(E_{\Phi}) + P(\beta_{*}\Phi) & \text{(}E_{\Phi} \in \mathfrak{C} \text{ and admissibility)} \\ &= -s(\omega_{+}) + s(\nu_{\mathrm{eq}}) \geq 0 & \text{(}\nu_{\mathrm{eq}} \in \mathcal{S}_{\mathrm{eq}}(\beta_{*}\Phi)) \end{split}$$

So we have $s(\omega_+)=s(\nu_{\rm eq})$ and $\omega_+(E_\Phi)=\nu_{\rm eq}(E_\Phi)$. Gibbs var. principle gives $\omega_+\in\mathcal{S}_{\rm eq}(\beta_*\Phi)=\{\nu_{\rm eq}\}$

Approach to Thermal Equilibrium - admissibility

Let $\omega \in \mathcal{S}_I$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$. Recall we assume the basic conservation laws, in particular $E_\Phi \in \mathfrak{C}$.

Theorem

Jakšić, Pillet, S, Tauber '25

Assume that $\mathcal{S}_{\mathrm{eq}}(\beta_*\Phi)=\{\nu_{\mathrm{eq}}\}$ with $(\nu_{\mathrm{eq}},\beta_*\Phi)$ regular, and that ω is admissible for ν_{eq} .

For $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$, the following statements are equivalent:

- (1) $\omega_+ = \nu_{\rm eq}$
- (2) $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(\Psi_+)$ with $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$ such that $\mathcal{E}_{\Psi_+} \in \mathfrak{C}$ and (ω_+, Ψ_+) is regular.
 - ullet The admissibility of ω with respect to $u_{\rm eq}$ is a physical constraint.
 - ullet Now we will discuss the case when ω is **not** admissible. Approach to Thermal Equilibrium cannot happen
 - Principle of maximum entropy:

In the long time the system settles in a state that maximizes entropy while respecting constants of motion.

Ruelle's physical equivalence

Equivalence of observables

Let
$$A, B \in \mathcal{U}_{\text{real}}$$
.

$$A \sim_{\mathcal{O}} B \iff \exists c \in \mathbb{R} \ \forall \omega \in \mathcal{S}_{\mathcal{I}} \ \omega(A) = \omega(B) + c$$

$$A \sim_{\mathrm{sO}} B \iff \forall \omega \in \mathcal{S}_{\mathrm{I}} \ \ \omega(A) = \omega(B)$$

Equivalence of interactions

Let
$$\Psi,\Phi\in\mathcal{B}_{\mathrm{b}}.$$

$$\Psi \sim_{\mathrm{I}} \Phi \in \mathcal{B}_{\mathrm{b}} \iff \textit{E}_{\Psi} \sim_{\mathrm{O}} \textit{E}_{\Phi}$$

$$\Psi \sim_{\mathrm{sI}} \Phi \in \mathcal{B}_{\mathrm{b}} \iff \textit{E}_{\Psi} \sim_{\mathrm{sO}} \textit{E}_{\Phi}$$

Ruelle's maps

The following maps are isometries:

$${\mathcal B}_{
m b}/{\sim_{
m I}}
i [\Psi]\longmapsto [{\mathcal E}_{\Psi}]\in {\mathcal U}_{
m real}/{\sim_{
m O}}$$

$$\mathcal{B}_{\mathrm{b}}/{\sim_{\mathrm{sI}}}
ignite{[\Psi]}\longmapsto [\mathit{E}_{\Psi}]\in \mathcal{U}_{\mathrm{real}}/{\sim_{\mathrm{sO}}}$$

What we will see most often: $C \in \mathfrak{C} \longrightarrow \Psi_C \in \mathcal{B}_b \longrightarrow E_{\Psi_C}$. Then $E_{\Psi_C} \sim_{\mathrm{sO}} C$, i.e. $\omega(C) = \omega(E_{\Psi_C}) \ \forall \omega \in \mathcal{S}_I$

Regular and Physical Constants of Motion

We distinguish two special classes of constants of motion. Let $C \in \mathfrak{C}$.

Regular constants of motion

- ullet $C\in \mathfrak{C}_{\mathrm{reg}}$ \iff $(
 ho,\Psi_C)$ regular for every $ho\in \mathcal{S}_{\mathrm{eq}}(\Psi_C)$
- $\bullet \ \, \mathsf{Equilibria} \ \, \mathsf{of} \ \, \mathfrak{C}_{\mathrm{reg}} \colon \ \, \rho \in \mathcal{S}_{\mathrm{eq}}(\mathfrak{C}_{\mathrm{reg}}) \ \, \Longleftrightarrow \ \, \exists \, \mathcal{C} \in \mathfrak{C}_{\mathrm{reg}} \ \, \rho \in \mathcal{S}_{\mathrm{eq}}(\Psi_{\mathcal{C}})$

Physical constants of motion

- $\bullet \ \ \textit{C} \in \mathfrak{C}_{\mathrm{phys}} \ \iff \ \ \Psi_{\textit{C}} \in \mathcal{B}_{\mathrm{sd}}$
- \bullet Equilibria of $\mathfrak{C}_{\mathrm{phys}}\colon$

$$\rho \in \mathcal{S}_{\mathrm{eq}}(\mathfrak{C}_{\mathrm{phys}}) \quad \Longleftrightarrow \quad \exists \, \mathcal{C} \in \mathfrak{C}_{\mathrm{phys}} \quad \rho \in \mathcal{S}_{\mathrm{eq}}(\Psi_{\mathcal{C}}) \quad \Longleftrightarrow \quad \exists \Psi \in \mathcal{B}_{\mathrm{sd}} \quad \rho \in \mathcal{S}_{\mathrm{eq}}(\Psi) \text{ and } E_{\Psi} \in \mathfrak{C}$$

- ullet Under R-conjecture: $\mathfrak{C}_{
 m phys}\subset\mathfrak{C}_{
 m reg}$
- ullet Note that $\omega_+\in\mathcal{S}_{\mathrm{eq}}(\mathfrak{C}_{\mathrm{phys}})$ is equivalent to the condition we need for ATE

Variational characterization of $\mathcal{S}_{\mathrm{eq}}(\mathfrak{C}_{\mathrm{reg}})$

Theorem

Let $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$. Then

$$s(\omega_+) \leq s(\omega) + \inf_{\rho \in \mathcal{S}_{eq}(\mathfrak{C}_{reg})} s(\omega|
ho)$$

and

$$\omega_+ \in \mathcal{S}_{ ext{eq}}(\mathfrak{C}_{ ext{reg}}) \quad \Longleftrightarrow \quad \inf_{
ho \in \mathcal{S}_{ ext{eq}}(\mathfrak{C}_{ ext{reg}})} s(\omega |
ho) = s(\omega | \omega_+) = s(\omega_+) - s(\omega)$$

Proof. Let $C \in \mathfrak{C}_{reg}$ be associated to Ψ_C . Recall $C \sim_{sO} E_{\Psi_C}$. For every $\rho \in \mathcal{S}_{eq}(\Psi_C)$ and T > 0

$$\begin{split} s(\omega|\rho) &= -s(\omega) + \omega(E_{\Psi_C}) &\quad + P(\Psi_C) &\quad \text{(regularity of } (\rho, \Psi_C)) \\ &= -s(\omega) + \omega_T(E_{\Psi_C}) + P(\Psi_C) &\quad (C \in \mathfrak{C}) \\ &= -s(\omega) + \omega_+(E_{\Psi_C}) + P(\Psi_C) &\quad (T_n \uparrow \infty \text{ so that } \omega_{T_n} \to \omega_+) \\ &\geq -s(\omega) + s(\omega_+) &\quad \text{(Gibbs variational principle)} \end{split}$$

Hence $\inf_{\rho \in \mathcal{S}_{eq}(\mathfrak{C}_{reg})} s(\omega|\rho) \geq s(\omega_+) - s(\omega)$. The other claim follows.

Minimizers of relative entropy

Denote the set of minimizers by $\mathcal{S}_{\mathrm{eq},+}(\mathfrak{C}_{\mathrm{reg}}) = \mathcal{S}_{\mathrm{eq}}(\mathfrak{C}_{\mathrm{reg}}) \cap \mathcal{S}_{+}(\omega,\Phi).$

Proposition

- ullet Let $\omega_+, ilde{\omega}_+ \in \mathcal{S}_{ ext{eq},+}(\mathfrak{C}_{ ext{reg}})$. Then $s(\omega_+) = s(ilde{\omega}_+)$ and $s(\omega_+| ilde{\omega}_+) = 0$.
- ullet There exists $C\in \mathfrak{C}_{\mathrm{reg}}$, unique up to equivalence, such that $\mathcal{S}_{\mathrm{eq},+}(\mathfrak{C}_{\mathrm{reg}})\subset \mathcal{S}_{\mathrm{eq}}(\Psi_C)$.

Proof. Equality of specific entropies follows immediately by the previous theorem.

For specific relative entropy, let $C\in\mathfrak{C}_{\mathrm{reg}}$ be such that $\omega_+\in\mathcal{S}_{\mathrm{eq}}(\Psi_C)$. Then

$$\begin{split} s(\tilde{\omega}_{+}|\omega_{+}) &= -s(\tilde{\omega}_{+}) + \tilde{\omega}_{+}(E_{\Psi_{C}}) + P(\Psi_{C}) & \text{(regularity of } (\omega_{+}, \Psi_{C})) \\ &= -s(\omega) + \omega(E_{\Psi_{C}}) + P(\Psi_{C}) & \text{(entropy and C conserved)} \\ &= -s(\omega_{+}) + \omega_{+}(E_{\Psi_{C}}) + P(\Psi_{C}) = 0, & \text{(entropy and C conserved \& GVP)} \end{split}$$

This also means that $ilde{\omega}_+ \in \mathcal{S}_{\mathrm{eq}}(\Psi_{\mathcal{C}})$, which yields the second claim.

Constrained Approach to Equilibrium

Constrained Approach to Equilibrium

The pair (ω,Φ) has the property of the Constrained Approach to Equilibrium if

(1)
$$S_+(\omega, \Phi) = \{\omega_+\}$$

$$(2) \ \omega_+ \in \mathcal{S}_{\text{eq}}(\mathfrak{C}_{\text{phys}}) \text{ and } s(\omega_+) = s(\omega) + \inf_{\rho \in \mathcal{S}_{\text{eq}}(\mathfrak{C}_{\text{phys}})} s(\omega|\rho) \text{ with unique minimizer } \omega_+.$$

Interpretation of (2): The system relaxes to a state of maximal entropy compatible with constant of motions.

Also, by Quantum Stein lemma: Among all states in $\mathcal{S}_{eq}(\mathfrak{C}_{phys})$, ω_+ is the least distinguishable from ω .

Constrained Approach to Equilibrium

Constrained Approach to Equilibrium

The pair (ω,Φ) has the property of the Constrained Approach to Equilibrium if

- (1) $S_+(\omega, \Phi) = \{\omega_+\}$
- (2) $\omega_+ \in \mathcal{S}_{eq}(\mathfrak{C}_{phys})$ and $s(\omega_+) = s(\omega) + \inf_{\rho \in \mathcal{S}_{eq}(\mathfrak{C}_{phys})} s(\omega|\rho)$ with unique minimizer ω_+ .

Interpretation of (2): The system relaxes to a state of maximal entropy compatible with constant of motions.

Also, by Quantum Stein lemma: Among all states in $\mathcal{S}_{\mathrm{eq}}(\mathfrak{C}_{\mathrm{phys}})$, ω_+ is the least distinguishable from ω .

- Assume R-Conjecture. Then $\omega_+ \in \mathcal{S}_{eq}(\mathfrak{C}_{phys}) \subset \mathcal{S}_{eq}(\mathfrak{C}_{reg})$, so the variational char. of $\mathcal{S}_{eq}(\mathfrak{C}_{reg})$ holds. Thus $s(\omega_+) = s(\omega) + \inf_{\rho \in \mathcal{S}_{eq}(\mathfrak{C}_{phys})} s(\omega|\rho)$ with minimizer ω_+ .
- If Part (1) holds, this minimizer is unique. Part (2) reduces to $\omega_+ \in \mathcal{S}_{eq}(\mathfrak{C}_{phys})$
- $\bullet \ \ \mathsf{Recall} \ \ \mathsf{in} \ \ \mathsf{ATE}\text{-definition we require} \ \omega_+ \in \mathcal{S}_{\mathrm{eq}}(\beta_*\Phi) \subset \mathcal{S}_{\mathrm{eq}}(\mathfrak{C}_{\mathrm{phys}})$

Constrained Approach to Equilibrium

Constrained Approach to Equilibrium

The pair (ω,Φ) has the property of the Constrained Approach to Equilibrium if

- (1) $S_+(\omega, \Phi) = \{\omega_+\}$
- (2) $\omega_+ \in \mathcal{S}_{eq}(\mathfrak{C}_{phys})$ and $s(\omega_+) = s(\omega) + \inf_{\rho \in \mathcal{S}_{eq}(\mathfrak{C}_{phys})} s(\omega|\rho)$ with unique minimizer ω_+ .

Interpretation of (2): The system relaxes to a state of maximal entropy compatible with constant of motions.

Also, by Quantum Stein lemma: Among all states in $\mathcal{S}_{eq}(\mathfrak{C}_{phys})$, ω_+ is the least distinguishable from ω .

- Assume R-Conjecture. Then $\omega_+ \in \mathcal{S}_{eq}(\mathfrak{C}_{phys}) \subset \mathcal{S}_{eq}(\mathfrak{C}_{reg})$, so the variational char. of $\mathcal{S}_{eq}(\mathfrak{C}_{reg})$ holds. Thus $s(\omega_+) = s(\omega) + \inf_{\rho \in \mathcal{S}_{eq}(\mathfrak{C}_{phys})} s(\omega|\rho)$ with minimizer ω_+ .
- If Part (1) holds, this minimizer is unique. Part (2) reduces to $\omega_+ \in \mathcal{S}_{eq}(\mathfrak{C}_{phys})$
- ullet Recall in ATE-definition we require $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(eta_*\Phi) \subset \mathcal{S}_{\mathrm{eq}}(\mathfrak{C}_{\mathrm{phys}})$

Assume as in ATE-theorem that $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(\Psi_+)$ with $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$ and $E_{\Psi_+} \in \mathfrak{C}$. Then $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(\mathfrak{C}_{\mathrm{phys}})$.

Key question now: what conditions ensure $E_{\Psi_+} \in \mathfrak{C}$?

Quantum Stein Lemma

Let $\rho, \sigma \in \mathcal{S}_{I}$ and $\Lambda \in \mathcal{F}$.

 H_0 : the system is in state ρ

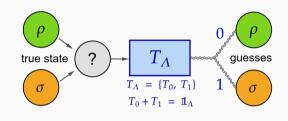
 H_1 : the system is in state σ

Type I error = P(we guessed ρ | true state is σ)

$$=\operatorname{tr}(\sigma_{\Lambda}T_{0})=:\alpha_{\Lambda,T_{\Lambda}}$$

Type II error $= P(we guessed \sigma | true state is \rho)$

$$=\operatorname{tr}(\rho_{\Lambda}T_{1})=:\beta_{\Lambda,T_{\Lambda}}$$



Fix ϵ small. We pick optimal T_{Λ} to minimize Type II error while keeping Type I error under control:

$$\beta_{\Lambda} = \inf_{T_{\Lambda}} \{ \beta_{\Lambda, T_{\Lambda}} \mid \alpha_{\Lambda, T_{\Lambda}} \le \epsilon \}$$

Quantum Stein Lemma

Let $\rho, \sigma \in \mathcal{S}_I$ and $\Lambda \in \mathcal{F}$.

 H_0 : the system is in state ρ

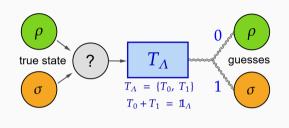
 H_1 : the system is in state σ

Type I error = P(we guessed ρ | true state is σ)

$$= \operatorname{tr}(\sigma_{\Lambda} T_{0}) =: \alpha_{\Lambda, T_{\Lambda}}$$

Type II error $= P(\text{we guessed } \sigma \mid \text{true state is } \rho)$

$$= \operatorname{tr}(\rho_{\Lambda} T_{1}) =: \beta_{\Lambda, T_{\Lambda}}$$



Fix ϵ small. We pick optimal T_{Λ} to minimize Type II error while keeping Type I error under control:

$$\begin{split} \beta_{\Lambda} &= \inf_{\mathcal{T}_{\Lambda}} \{\beta_{\Lambda, \mathcal{T}_{\Lambda}} \mid \alpha_{\Lambda, \mathcal{T}_{\Lambda}} \leq \epsilon \} \\ \\ \beta_{\Lambda} &\approx \mathrm{e}^{-k|\Lambda|} \quad \text{with} \quad k = -\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log \beta_{\Lambda} \end{split}$$

Quantum Stein Lemma: $k=s(
ho|\sigma)$ i.e. $eta_{\Lambda}pprox \mathrm{e}^{-|\Lambda|s(
ho|\sigma)}$

QSL gives the **operational meaning of specific relative entropy** as the optimal asymptotic exponential decay rate of Type II error with Type I error fixed (asymmetric hypothesis testing).

Quantum Stein Lemma

Theorem

Assume that for some $\delta>0$ the following limit exists and is finite for $s\in[0,1+\delta]$:

$$e(s) = \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log \operatorname{tr}_{\Lambda}(\sigma_{\Lambda}^s \rho_{\Lambda}^{1-s}).$$

Also, assume that the function e is continuous on $[0, 1 + \delta]$, differentiable on (0, 1], and $D^+e(0) < e'(1)$. Then the Quantum Stein Lemma holds for (σ, ρ) .

Let $\Phi, \Psi \in \mathcal{B}_{\mathrm{f}}$ and $\rho \in \mathcal{S}_{\mathrm{eq}}(\Phi)$, $\sigma \in \mathcal{S}_{\mathrm{eq}}(\Psi)$.

- If d=1, then QSL holds for (σ,ρ) iff Φ,Ψ are not equivalent
- ullet If d>1, then QSL holds for $(\sigma,
 ho)$ iff Φ,Ψ are not equivalent and both $\|\Phi\|_{\mathrm{s}}$ and $\|\Psi\|_{\mathrm{s}}$ are small enough

Interpretation of Constrained Approach to Equilibrium via Quantum Stein Lemma

Assume the Quantum Stein Lemma holds for all pairs (ω, ν) , $\nu \in \mathcal{S}_{\mathrm{eq}}(\mathfrak{C}_{\mathrm{phys}})$.

Among all equilibrium states in $\mathcal{S}_{\mathrm{eq}}(\mathfrak{C}_{\mathrm{phys}})$, ω_+ is the **least distinguishable** from ω .

Key question now:

Suppose that $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(\Psi_+)$ with $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$. How can we ensure that $\mathcal{E}_{\Psi_+} \in \mathfrak{C}$?

Next:

- Structural theory of Constants of Motion:
 - ullet What assures $E_{\Psi_+} \in \mathfrak{C}$? Conjecture SD and Conjecture R+SE
 - Additional Conjecture SD+ to characterize C (useful for trivial admissibility later on)
- Conservation Laws:
 - basic CLs for specific entropy and energy (recall they have been assumed all the time)
 - additional CLs as partial solutions to Conjectures

Mini-Dictionary:

- SD stands for *surface-dynamics*
- SD+ for surface dynamics plus something else
- R for regularity
- SE for specific (relative) entropy

Constants of Motion

- Aim: find natural conditions on (Φ,Ψ) under which $E_{\Psi}\in\mathfrak{C}(\alpha_{\Phi})$
- Optimally: find characterization of $\mathfrak{C}(\alpha_{\Phi})$
- There's going to be two parts:
 - 1. Conditions related to surface energies and commuting dynamics

Characterization of $\mathfrak C$ via Commuting Dynamics: Motivation

Consider $\omega_+ \in \mathcal{S}_+(\omega, \Phi) \cap \mathcal{S}_{eq}(\Psi_+)$ with $\Psi_+ \in \mathcal{B}_{sd}$. Then

- ω_+ is a KMS state for $s \mapsto \alpha_{\Psi_+}^s$
- ω_+ is α_{Φ} -invariant, so a KMS state for $s \mapsto \alpha_{\Phi}^{-t} \circ \alpha_{\Psi_+}^s \circ \alpha_{\Phi}^t$ for any fixed $t \in \mathbb{R}$.

Shared KMS state \Rightarrow the two dynamics coincide:

$$\alpha_{\Phi}^{-t} \circ \alpha_{\Psi_{+}}^{s} \circ \alpha_{\Phi}^{t} = \alpha_{\Psi_{+}}^{s} \quad \forall t, s \in \mathbb{R}$$

That is, α_{Ψ_+} is preserved by α_{Φ} .

Does $\alpha_{\Phi}^t \circ \alpha_{\Psi_+}^s = \alpha_{\Psi_+}^s \circ \alpha_{\Phi}^t$ imply that $E_{\Psi_+} \in \mathfrak{C}$? Are those two equivalent?

Characterization of $\mathfrak C$ via Commuting Dynamics: SD property

Let $\Phi, \Psi \in \mathcal{B}_{\mathrm{sd}}$. Fix $t \in \mathbb{R}$ and for each $\Lambda \in \mathcal{F}$ consider a **dressed Hamiltonian**:

$$H_t(\Lambda) := e^{-itH_{\Phi}(\Lambda)}H_{\Psi}(\Lambda)e^{itH_{\Phi}(\Lambda)} = \alpha_{\Phi,\Lambda}^{-t}(H_{\Psi}(\Lambda)).$$

- Generated dynamics: $s \mapsto \alpha_{\Phi}^{-t} \circ \alpha_{\Psi}^{s} \circ \alpha_{\Phi}^{t}$
- Surface energies: $W_t(\Lambda) = \lim_{\Lambda' \uparrow \mathbb{Z}^d} [H_t(\Lambda') H_t(\Lambda) H_t(\Lambda' \setminus \Lambda)]$
- The corresponding translation-inv. interaction Ψ_t is uniquely defined as (but it need not be even in \mathcal{B}_b !)

$$\Psi_t(\Lambda) = \sum_{X \subset \Lambda} (-1)^{|\Lambda| - |X|} H_t(X)$$

SD property

We say (Φ, Ψ) has the SD property if $W_t(\Lambda)$ exists for all $\Lambda \in \mathcal{F}$, and $\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} W_t(\Lambda) = 0$, for $|t| < \epsilon$.

Theorem

Jakšić, Pillet, S, Tauber '25

Let (Φ, Ψ) with SD property. Then $\alpha_{\Phi}^t \circ \alpha_{\Psi}^s = \alpha_{\Psi}^s \circ \alpha_{\Phi}^t \implies E_{\Psi} \in \mathfrak{C}$.

Conjecture SD: For any $\Phi, \Psi \in \mathcal{B}_{\mathrm{sd}},$ the pair (Φ, Ψ) has SD property.

Characterization of $\mathfrak C$ via Commuting Dynamics: SD+ Property

Theorem Jakšić, Pillet, S, Tauber '25

Let $\Phi, \Psi \in \mathcal{B}_{\mathrm{sd}}$. Then $E_{\Psi} \in \mathfrak{C}$ and $\Psi_t \in \mathcal{B}_{\mathrm{sd}}$ for $|t| < \epsilon \implies \alpha_{\Phi}^t \circ \alpha_{\Psi}^s = \alpha_{\Psi}^s \circ \alpha_{\Phi}^t$.

Characterization of $\mathfrak C$ via Commuting Dynamics: SD+ Property

Theorem Jakšić, Pillet, S, Tauber '25

Let $\Phi, \Psi \in \mathcal{B}_{\mathrm{sd}}$. Then $\mathcal{E}_{\Psi} \in \mathfrak{C}$ and $\Psi_t \in \mathcal{B}_{\mathrm{sd}}$ for $|t| < \epsilon \implies \alpha_{\Phi}^t \circ \alpha_{\Psi}^s = \alpha_{\Psi}^s \circ \alpha_{\Phi}^t$.

If the pair (Φ,Ψ) has SD property, for each $|t|<\epsilon$ we can define the derivation δ_t on $\mathcal{U}_{\mathrm{loc}}$ by

$$\delta_t(A) = i[H_t(\Lambda), A] + i[W_t(\Lambda), A], \qquad A \in \mathcal{U}_{\Lambda}.$$

SD+ property

We say (Φ, Ψ) has $\mathsf{SD}+$ property if it has SD property and in addition the following holds for $|t|<\epsilon$:

- $(i \pm \delta_t) \mathcal{U}_{loc}$ is dense in \mathcal{U}
- $\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Psi}(\Lambda)) \alpha_{\Phi,\Lambda}^t(H_{\Psi}(\Lambda))\| = 0$

Theorem

Jakšić, Pillet, S, Tauber '25

Let $\Phi, \Psi \in \mathcal{B}_{\mathrm{sd}}$ with SD+ property. Then $E_{\Psi} \in \mathfrak{C} \iff \alpha_{\Phi}^t \circ \alpha_{\Psi}^s = \alpha_{\Psi}^s \circ \alpha_{\Phi}^t$.

Conjecture SD+: For any $\Phi, \Psi \in \mathcal{B}_{\mathrm{sd}}$, the pair (Φ, Ψ) has SD+ property.

Characterization of $\mathfrak C$ via relative entropy

Fix $\Phi \in \mathcal{B}_{\mathrm{sd}}$. Recall we assume conservation of specific entropy: $s(\rho \circ \alpha_{\Phi}^t) = s(\rho)$ for all $\rho \in \mathcal{S}_{\mathrm{I}}, \ t \in \mathbb{R}$.

Proposition

Let $\Psi \in \mathcal{B}_{\mathrm{sd}}$ and $\omega \in \mathcal{S}_{\mathrm{eq}}(\Psi)$. Assume that (ω, Ψ) is regular. Then

$$orall t \in \mathbb{R} \ orall
ho \in \mathcal{S}_{\mathrm{I}} \ s(
ho \circ lpha_{\Phi}^t | \omega) = s(
ho | \omega) \iff E_{\Psi} \in \mathfrak{C}$$

Proof is immediate:

$$egin{aligned} s(
ho|\omega) &= -s(
ho) &+
ho(E_\Psi) &+
ho(\Psi) \ s(
ho \circ lpha_\Phi^t|\omega) &= -s(
ho \circ lpha_\Phi^t) + (
ho \circ lpha_\Phi^t)(E_\Psi) + P(\Psi) \end{aligned}$$

Conjecture R+SE: Conjecture R holds and for any $\Phi, \Psi \in \mathcal{B}_{sd}$ and $\omega \in \mathcal{S}_{eq}(\Psi)$ we have

$$orall t \in \mathbb{R} \ \ orall
ho \in \mathcal{S}_{\mathrm{I}} \ \ \ s(
ho \circ lpha_{\Phi}^t | \omega) = s(
ho | \omega)$$

Characterization of $\mathfrak C$ via relative entropy

Fix $\Phi \in \mathcal{B}_{\mathrm{sd}}$. Recall we assume conservation of specific entropy: $s(\rho \circ lpha_\Phi^t) = s(
ho)$ for all $\rho \in \mathcal{S}_{\mathrm{I}}, \ t \in \mathbb{R}$.

Proposition

Let $\Psi\in\mathcal{B}_{\mathrm{sd}}$ and $\omega\in\mathcal{S}_{\mathrm{eq}}(\Psi).$ Assume that (ω,Ψ) is regular. Then

$$orall t \in \mathbb{R} \ \ orall
ho \in \mathcal{S}_{\mathrm{I}} \ \ \ s(
ho \circ lpha_{\Phi}^t | \omega) = s(
ho | \omega) \quad \Longleftrightarrow \quad E_{\Psi} \in \mathfrak{C}$$

Proof is immediate:

$$\begin{split} s(\rho|\omega) &= -s(\rho) \quad + \quad \rho(E_{\Psi}) \quad + \quad P(\Psi) \\ s(\rho \circ \alpha_{\Phi}^t|\omega) &= -s(\rho \circ \alpha_{\Phi}^t) + (\rho \circ \alpha_{\Phi}^t)(E_{\Psi}) + P(\Psi) \end{split}$$

Conjecture R+SE: Conjecture R holds and for any $\Phi,\Psi\in\mathcal{B}_{\mathrm{sd}}$ and $\omega\in\mathcal{S}_{\mathrm{eq}}(\Psi)$ we have

$$orall t \in \mathbb{R} \ \ orall
ho \in \mathcal{S}_{\mathrm{I}} \ \ \ s(
ho \circ lpha_{\Phi}^t | \omega) = s(
ho | \omega)$$

- ullet We have seen various properties of (Φ,Ψ) that assure $E_\Psi\in\mathfrak{C}(lpha_\Phi)$
- ullet Conjectures say: All reasonable/physical ($=\mathcal{B}_{\mathrm{sd}}$) interactions have these properties
- ullet Conjectures concern structural properties of QSS, in particular they have nothing to do with time $o \infty$

Back to Approach to Thermal Equilibrium

Let $\omega \in \mathcal{S}_{\mathrm{I}}$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$.

Theorem

Jakšić, Pillet, S, Tauber '25

Assume that $S_{\rm eq}(\beta_*\Phi)=\{\nu_{\rm eq}\}$ with $(\nu_{\rm eq},\beta_*\Phi)$ regular, and that ω is admissible for $\nu_{\rm eq}$.

For $\omega_+ \in \mathcal{S}_+(\omega,\Phi)$, the following statements are equivalent:

- (1) $\omega_+ = \nu_{\rm eq}$
- (2) $\omega_+ \in \mathcal{S}_{eq}(\Psi_+)$ with $\Psi_+ \in \mathcal{B}_{sd}$ such that (ω_+, Ψ_+) is regular, and $\mathcal{E}_{\Psi_+} \in \mathfrak{C}$.
 - ullet Recall $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$ is a minimal physicality requirement.
 - If Conjecture R holds, then (ω_+, Ψ_+) is regular.
 - ullet If either Conjecture SD or Conjecture R+SE holds, then $E_{\Psi_+}\in \mathfrak{C}.$

Thus, assuming the conjectures and a physically relevant setting, Approach to Thermal Equilibrium follows!

Key questions now:

- When do these conjectures hold (if at all...)?
- What about SD+?

(Spoiler) Why SD+? Non-integrable systems

Let $\omega \in \mathcal{S}_{\mathrm{I}}$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$.

Theorem

Jakšić, Pillet, S, Tauber '25

Assume $S_{eq}(\beta_*\Phi) = \{\nu_{eq}\}$ with $(\nu_{eq}, \beta_*\Phi)$ regular, and E_{Φ} is the **unique constant of motion** (up to \sim).

Let $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$ and assume that $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(\Psi_+)$ with $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$ and $\mathcal{E}_{\Psi_+} \in \mathfrak{C}$.

Then $\omega_+ = \nu_{\rm eq}$.

- Regularity of (ω_+, Ψ_+) is not required! Price to pay: we must verify there are no additional constants of motion. This is where the characterization of \mathfrak{C} via Property SD+ intervenes.
- There's new results started by [Shiraishi'19] proving the non-integrability (≈ unique constant of motion)
 of a large class of 1D-models, also extended recently to higher dimensions.
- Using SD+ property, we can connect our setting with these results. More on Friday.

Conservation Laws (& partial solutions to Conjectures)

- Basic conservation laws: specific entropy and energy
- Conjectures via conservation laws for various properties

Basic Conservation Laws

$$\mathcal{B}^r = \{ \Phi \ : \ \|\Phi\|_r < \infty \} \qquad \text{with} \ \ \|\Phi\|_r \qquad = \ \sum\nolimits_{X \ni 0} \mathrm{e}^{r(|X|-1)} \|\Phi(X)\| \quad \text{and} \ \ r > 0$$

$$\mathcal{B}_{\gamma}^{\mathrm{diam}} = \{\Phi \ : \ \|\Phi\|_{\gamma}^{\mathrm{diam}} < \infty\} \ \text{with} \ \|\Phi\|_{\gamma}^{\mathrm{diam}} = \ \sum\nolimits_{X \ni 0} |X| [\mathrm{diam}(X)]^{\gamma} \|\Phi(X)\| \quad \text{and} \ \gamma > 0$$

- ullet Both \mathcal{B}^r and $\mathcal{B}^{
 m diam}_\gamma$ are Banach spaces and $\mathcal{B}_{
 m f}$ is a dense subset of each
- ullet \mathcal{B}^r with r>0 and $\mathcal{B}^{
 m diam}_{\gamma}$ with $\gamma>d$ are subsets of $\mathcal{B}_{
 m sd}$ ([Bratelli-Robinson] and [Bru-Pedra], respectively)
- ullet $\mathcal{B}_{\gamma}^{ ext{diam}}$ and \mathcal{B}^r are incomparable

Theorem: Basic Conservation Laws

Let $\Phi \in \mathcal{B}^r$ with r>0, or $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma>2d$. Then

$$s(\omega \circ lpha_{\Phi}^t) = s(\omega), \quad \omega \circ lpha_{\Phi}^t(\mathcal{E}_{\Phi}) = \omega(\mathcal{E}_{\phi}) \qquad orall t \in \mathbb{R} \quad orall \omega \in \mathcal{S}_{\mathrm{I}}$$

Entropy in \mathcal{B}^r [Lanford-Robinson'68], Energy in \mathcal{B}^r [Jakšić-Pillet-Tauber'24], both in $\mathcal{B}^{ ext{diam}}_{\gamma}$ [Jakšić-Pillet-S-Tauber'25]

- ullet For \mathcal{B}^r , the proofs of CL for energy and entropy are completely different
- ullet For $\mathcal{B}_{\gamma}^{
 m diam}$, the **Lieb-Robinson bound** provides the common framework for both CLs

Lieb-Robinson bound

Theorem

[Nachtergaele-Sims-Young'19]

Let $\Phi \in \mathcal{B}_{\gamma}^{ ext{diam}}$ with $\gamma > d$, and $0 < \epsilon < \gamma - d$. Then:

- ullet Dynamics $lpha_{ullet}$ exists
- Lieb-Robinson bound: Let $t \in \mathbb{R}$, $\Lambda_0 \subset \Lambda$, and $A \in \mathcal{U}_{\Lambda_0}$.

$$\exists c_t > 0 \quad \|\alpha_{\Phi}^t(A) - \alpha_{\Phi, \Lambda}^t(A)\| \leq c_t \|A\| |\Lambda_0| (1 + \operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda))^{-(\gamma - d - \epsilon)}$$

Proving the conservation of specific entropy via the Lieb-Robinson bound has been suggested by Wreszinski:

- W. F. Wreszinski: Irreversibility, the time arrow and a dynamical proof of the second law of thermodynamics. Quantum Stud.: Math. Found. 7 (2020)
- W. F. Wreszinski: The second law of thermodynamics as a deterministic theorem for quantum spin systems. Rev. Math. Phys. 35 (2023)

For $\Lambda \in \mathcal{F}$:

$$(\rho \circ \alpha_{\Phi, \Lambda}^t)(H_{\Lambda}(\Phi)) = \rho(e^{itH_{\Lambda}(\Phi)}H_{\Lambda}(\Phi)e^{-itH_{\Lambda}(\Phi)}) = \rho(H_{\Lambda}(\Phi)),$$

which gives

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}(\rho\circ\alpha^t_{\Phi,\Lambda})(H_{\Lambda}(\Phi))=\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\rho(H_{\Lambda}(\Phi))=\rho(E_{\Phi}).$$

On the other hand,

$$\lim_{\Lambda\uparrow\mathbb{Z}^d} \frac{1}{|\Lambda|} (\rho\circ\alpha_{\Phi}^t)(H_{\Lambda}(\Phi)) = (\rho\circ\alpha_{\Phi}^t)(E_{\Phi}).$$

Proposition

Let $\Phi \in \mathcal{B}_{\gamma}^{ ext{diam}}$ with $\gamma > 2d$. Then

$$\forall \rho \in \mathcal{S}_{\mathrm{I}} \ \ \forall t \in \mathbb{R} \qquad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} |(\rho \circ \alpha_{\Phi}^t)(H_{\Lambda}(\Phi)) - (\rho \circ \alpha_{\Phi,\Lambda}^t)(H_{\Lambda}(\Phi))| = 0$$

For $\Lambda \in \mathcal{F}$:

$$(\rho \circ \alpha_{\Phi, \Lambda}^t)(H_{\Lambda}(\Phi)) = \rho(e^{itH_{\Lambda}(\Phi)}H_{\Lambda}(\Phi)e^{-itH_{\Lambda}(\Phi)}) = \rho(H_{\Lambda}(\Phi)),$$

which gives

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}(\rho\circ\alpha^t_{\Phi,\Lambda})(H_{\Lambda}(\Phi))=\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\rho(H_{\Lambda}(\Phi))=\rho(E_{\Phi}).$$

On the other hand,

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}(\rho\circ\alpha_{\Phi}^t)(H_{\Lambda}(\Phi))=(\rho\circ\alpha_{\Phi}^t)(E_{\Phi}).$$

Proposition

Let $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$. Then

$$\forall \rho \in \mathcal{S}_{\mathrm{I}} \ \forall t \in \mathbb{R} \qquad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} |(\rho \circ \alpha_{\Phi}^t)(H_{\Lambda}(\Phi)) - (\rho \circ \alpha_{\Phi,\Lambda}^t)(H_{\Lambda}(\Phi))| = 0$$

$$\begin{aligned} |(\rho \circ \alpha_{\Phi}^{t})(H_{\Lambda}(\Phi)) - (\rho \circ \alpha_{\Phi,\Lambda}^{t})(H_{\Lambda}(\Phi))| &= |\rho(\alpha_{\Phi}^{t}(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda}(\Phi)))| \\ &\leq \|\alpha_{\Phi}^{t}(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda}(\Phi))\| \end{aligned}$$

$$\implies \text{ It suffices to show } \forall t \in \mathbb{R} \quad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0$$

Proposition

Let $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$. Then

$$\forall t \in \mathbb{R} \qquad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

Let Λ be a cube and Λ_0 a sub-cube. Define $\tilde{H}_{\Lambda,\Lambda_0}(\Phi) := H_{\Lambda}(\Phi) - H_{\Lambda_0}(\Phi)$.

$$\begin{split} &\|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| \\ &\leq &\|\alpha_{\Phi}^t(H_{\Lambda_{\mathbf{0}}}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda_{\mathbf{0}}}(\Phi))\| + \|\alpha_{\Phi}^t(\tilde{H}_{\Lambda,\Lambda_{\mathbf{0}}}(\Phi))\| + \|\alpha_{\Phi,\Lambda}^t(\tilde{H}_{\Lambda,\Lambda_{\mathbf{0}}}(\Phi))\| \end{split}$$

Proposition

Let $\Phi \in \mathcal{B}_{\gamma}^{ ext{diam}}$ with $\gamma > 2d$. Then

$$\forall t \in \mathbb{R} \qquad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

Let Λ be a cube and Λ_0 a sub-cube. Define $\tilde{H}_{\Lambda,\Lambda_0}(\Phi):=H_{\Lambda}(\Phi)-H_{\Lambda_0}(\Phi)$.

$$\begin{aligned} \|\alpha_{\Phi}^{t}(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda}(\Phi))\| \\ &\leq \|\alpha_{\Phi}^{t}(H_{\Lambda_{\mathbf{0}}}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda_{\mathbf{0}}}(\Phi))\| + 2 \|\tilde{H}_{\Lambda,\Lambda_{\mathbf{0}}}(\Phi)\| \end{aligned}$$

Proposition

Let $\Phi \in \mathcal{B}_{\gamma}^{ ext{diam}}$ with $\gamma > 2d$. Then

$$\forall t \in \mathbb{R} \qquad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

Let Λ be a cube and Λ_0 a sub-cube. Define $\tilde{H}_{\Lambda,\Lambda_0}(\Phi):=H_{\Lambda}(\Phi)-H_{\Lambda_0}(\Phi)$.

$$\begin{split} &\|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| \\ &\leq &\|\alpha_{\Phi}^t(H_{\Lambda_{\mathbf{0}}}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda_{\mathbf{0}}}(\Phi))\| + 2 \|\tilde{H}_{\Lambda,\Lambda_{\mathbf{0}}}(\Phi)\| \\ &\leq &\|H_{\Lambda_{\mathbf{0}}}(\Phi)\| c_t |\Lambda_0| (1 + \operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda))^{-\gamma + d + \epsilon} + 2 \|\tilde{H}_{\Lambda,\Lambda_{\mathbf{0}}}(\Phi)\| \end{split}$$

(Lieb-Robinson bound)

Proposition

Let $\Phi \in \mathcal{B}_{\gamma}^{ ext{diam}}$ with $\gamma > 2d$. Then

$$\forall t \in \mathbb{R} \qquad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

Let Λ be a cube and Λ_0 a sub-cube. Define $\tilde{H}_{\Lambda,\Lambda_0}(\Phi):=H_{\Lambda}(\Phi)-H_{\Lambda_0}(\Phi)$.

$$\begin{split} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| \\ & \leq \quad \|\alpha_{\Phi}^t(H_{\Lambda_0}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda_0}(\Phi))\| + \ 2 \ \|\tilde{H}_{\Lambda,\Lambda_0}(\Phi)\| \\ & \leq \quad \|H_{\Lambda_0}(\Phi)\| \ c_t \ |\Lambda_0| (1 + \operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda))^{-\gamma + d + \epsilon} + \ 2 \ \|\tilde{H}_{\Lambda,\Lambda_0}(\Phi)\| \\ & \leq \quad |\Lambda_0| \ \|\Phi\|_s \ c_t |\Lambda_0| (1 + \operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda))^{-\gamma + d + \epsilon} + |\Lambda \setminus \Lambda_0| \|\Phi\|_s \end{split}$$
 (Lieb-Robinson bound)

(because
$$\|H_{\Lambda_0}(\Phi)\| \leq \sum_{X \cap \Lambda_0 \neq \emptyset} \|\Phi(X)\| \leq |\Lambda_0| \sum_{X \ni 0} \|\Phi(X)\| \leq |\Lambda_0| \|\Phi\|_s)$$

Proposition

Let $\Phi \in \mathcal{B}_{\gamma}^{ ext{diam}}$ with $\gamma > 2d$. Then

$$\forall t \in \mathbb{R} \qquad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

Let Λ be a cube and Λ_0 a sub-cube. Define $\tilde{H}_{\Lambda,\Lambda_0}(\Phi):=H_{\Lambda}(\Phi)-H_{\Lambda_0}(\Phi)$.

$$\begin{split} \frac{1}{|\Lambda|} \| \alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi)) \| \\ & \leq \frac{1}{|\Lambda|} \| \alpha_{\Phi}^t(H_{\Lambda_0}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda_0}(\Phi)) \| + \frac{2}{|\Lambda|} \| \tilde{H}_{\Lambda,\Lambda_0}(\Phi) \| \\ & \leq \frac{1}{|\Lambda|} \| H_{\Lambda_0}(\Phi) \| \, c_t \, |\Lambda_0| (1 + \operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda))^{-\gamma + d + \varepsilon} + \frac{2}{|\Lambda|} \| \tilde{H}_{\Lambda,\Lambda_0}(\Phi) \| \\ & \leq \underbrace{\frac{|\Lambda_0|}{|\Lambda|}}_{\to 1} \| \Phi \|_s \, c_t \underbrace{|\Lambda_0| (1 + \operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda))^{-\gamma + d + \varepsilon}}_{\to 0} + \underbrace{\frac{|\Lambda \setminus \Lambda_0|}{|\Lambda|}}_{\to 0} \| \Phi \|_s \end{split}$$
 (Lieb-Robinson bound)

(because $||H_{\Lambda_0}(\Phi)|| \le \sum_{X \cap \Lambda_0 \ne \emptyset} ||\Phi(X)|| \le |\Lambda_0| \sum_{X \to 0} ||\Phi(X)|| \le |\Lambda_0| ||\Phi||_s$)

Can we construct families Λ , Λ_0 such that $\lim_{\Lambda \uparrow \mathbb{Z}^d} \ldots = 0$?

Lemma.

Assume $\gamma>2d$. Let Λ be a family of cubes such that $\Lambda\uparrow\mathbb{Z}^d$ and denote the side of Λ by L_{Λ} .

There exists $p\in (0,1)$ such that the sub-cubes $\Lambda_0=(1-L_{\Lambda}^{-p})\Lambda$ satisfy

- (i) $\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{|\Lambda \setminus \Lambda_{\mathbf{0}}|}{|\Lambda|} = 0$,
- (ii) $\lim_{\Lambda\uparrow\mathbb{Z}^d} |\Lambda_0| (1+\operatorname{dist}(\Lambda_0,\mathbb{Z}^d\setminus\Lambda))^{-\gamma+d+\epsilon} = 0$ for any $0<\epsilon<\gamma-2d$.
- (ii) Since $|\Lambda_0|=\left(1-L_\Lambda^{-p}\right)^dL_\Lambda^d$ and $\operatorname{dist}(\Lambda_0,\mathbb{Z}^d\setminus\Lambda)=L_\Lambda^{1-p}$, we obtain

$$|\Lambda_0|(1+\operatorname{dist}(\Lambda_0,\mathbb{Z}^d\setminus\Lambda))^{-\gamma+d+\epsilon}\leq L_\Lambda^{d-(1-\rho)(\gamma-d-\epsilon)}.$$

It follows that $d < (1-p)(\gamma-d-\epsilon)$ if $0 with <math>p_0 := \frac{\gamma-2d-\epsilon}{\gamma-d-\epsilon}$, so (ii) holds

 \Longrightarrow CL for specific energy holds for $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$

By-product: Precious Proposition

Proposition

Let $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$. Then

$$\forall t \in \mathbb{R} \qquad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

Precious Proposition

Let $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$ and $\Psi \in \mathcal{B}_{\mathrm{s}}.$ Then

$$\forall t \in \mathbb{R} \qquad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Psi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Psi))\| = 0.$$

- ullet As we have just seen, it is needed for CL for specific energy (with $\Psi=\Phi$)
- Recall this is one of the conditions defining the SD+ property
- It also intervenes in the partial solution to Conjecture SD

Conjecture SD

Let $\Phi, \Psi_0 \in \mathcal{B}_{\mathrm{sd}}$. Fix $t \in \mathbb{R}$ and define for $\Lambda \in \mathcal{F}$

$$H_t(\Lambda) := e^{-itH_{\Phi}(\Lambda)}H_{\Psi_{\mathbf{0}}}(\Lambda)e^{itH_{\Phi}(\Lambda)}.$$

- Generates dynamics $s \mapsto \alpha_{\Phi}^{-t} \circ \alpha_{\Psi_0}^s \circ \alpha_{\Phi}^t$
- ullet The corresponding translation-inv. interaction Ψ_t is uniquely defined but it need not be even in \mathcal{B}_b
- But its pressure and specific energy exist and can be easily computed

Partial solution to Conjecture SD

[Jakšić-Pillet-S-Tauber'25]

Let $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ for $\gamma > 2d$ and $\Psi_0 \in \mathcal{B}_{\gamma'}^{\mathrm{diam}}$ for $\gamma' > d$. Then (Φ, Ψ_0) has SD property for all $t \in \mathbb{R}$, i.e.

$$W_t(\Lambda)$$
 exists for all $\Lambda\in\mathcal{F}$ and $\lim_{\Lambda\uparrow\mathbb{Z}^d}rac{1}{|\Lambda|}W_t(\Lambda)=0$

Key tool in the proof is the Lieb-Robinson bound via Precious Proposition

Conjecture SD+

Refresher on SD+ property

We say (Φ, Ψ_0) has SD+ property if it has SD property and in addition the following holds for $|t| < \epsilon$:

- $(1) \ (\mathrm{i} \pm \delta_t) \, \mathcal{U}_{\mathrm{loc}} \ \text{is dense in} \ \mathcal{U}, \ \text{where} \ \delta_t(A) = i[H_t(\Lambda) + W_t(\Lambda), A] \ \text{for} \ A \in \mathcal{U}_{\Lambda}.$
- (2) $\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Psi_0}(\Lambda)) \alpha_{\Phi,\Lambda}^t(H_{\Psi_0}(\Lambda))\| = 0$
 - SD property and Part (2) hold for $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ for $\gamma > 2d$ and $\Psi \in \mathcal{B}_{\gamma'}^{\mathrm{diam}}$ for $\gamma > d$.
 - Part (1) is much harder, we only know it holds for pairs of finite-range interactions:

Partial solution to Conjecture SD+

[Jakšić-Pillet-S-Tauber'25]

Let $\Phi,\Psi_0\in\mathcal{B}_{\mathrm{f}}$. Then (Φ,Ψ_0) has SD+ property (so the characterization of $\mathfrak C$ via commuting dynamics holds)

Proof idea: We follow Bru-Pedra's proof that $(i \pm \delta_{\Psi}) \mathcal{U}_{loc}$ is dense in \mathcal{U} for $\Psi \in \mathcal{B}^{diam}_{\gamma}$ with $\gamma > d$, but we need to generalize the Lieb-Robinson bound to the composite dynamics generated by δ_t , i.e. instead of $\|(\alpha_{\Psi}^s - \alpha_{\Psi,\Lambda}^s)(A)\| \leq \ldots$ we need $\|(\alpha^s - \alpha_{\Lambda}^s)(A)\| \leq \ldots$ where $\alpha^s = \alpha_{\Phi}^{-t} \circ \alpha_{\Psi_0}^s \circ \alpha_{\Phi}^t$

How to tackle Conjecture R+SE

CL for relative entropy ⇒ Property SE

Let $\Psi_0 \in \mathcal{B}_{\mathrm{sd}}$ and $\omega \in \mathcal{S}_{\mathrm{eq}}(\Psi_0)$ such that (ω, Ψ_0) regular. Recall that SE property means

$$s(\rho \,|\, \omega) = s(\rho \circ \alpha_{\Phi}^t \,|\, \omega) \qquad \forall t \in \mathbb{R} \ \ \forall \rho \in \mathcal{S}_{\mathrm{I}}$$

Assume CL for relative entropy: $s(\rho \mid \omega) = s(\rho \circ \alpha_{\Phi}^t \mid \omega \circ \alpha_{\Phi}^t) \quad \forall t \in \mathbb{R} \quad \forall \rho \in \mathcal{S}_{\mathrm{I}}$

If ω is α_{Φ} -invariant, we recover SE property

How to tackle Conjecture R+SE

CL for relative entropy ⇒ Property SE

Let $\Psi_0 \in \mathcal{B}_{\mathrm{sd}}$ and $\omega \in \mathcal{S}_{\mathrm{eq}}(\Psi_0)$ such that (ω, Ψ_0) regular. Recall that SE property means

$$s(\rho \mid \omega) = s(\rho \circ \alpha_{\Phi}^t \mid \omega) \qquad \forall t \in \mathbb{R} \ \ \forall \rho \in \mathcal{S}_{\mathrm{I}}$$

Assume CL for relative entropy: $s(\rho \,|\, \omega) = s(\rho \circ \alpha_{\Phi}^t \,|\, \omega \circ \alpha_{\Phi}^t) \quad \forall t \in \mathbb{R} \ \ \forall \rho \in \mathcal{S}_{\mathrm{I}}$

If ω is α_{Φ} -invariant, we recover SE property

CL for regularity ⇒ **CL** for relative entropy

Assume CL for regularity: (ω, Ψ_0) regular $\Rightarrow (\omega \circ \alpha_{\Phi}^t, \Psi_t)$ regular

We check that $P_{\Psi_t} = P_{\Psi_0}$ and $E_{\Psi_t} = \alpha_{\Phi}^{-t}(E_{\Psi_0})$. Thus $(\rho \circ \alpha_{\Phi}^t)(E_{\Psi_t}) = (\rho \circ \alpha_{\Phi}^t)(\alpha_{\Phi}^{-t}(E_{\Psi_0})) = \rho(E_{\Psi_0})$, so

$$s(\rho \mid \omega) = -s(\rho) + \rho(E_{\Psi_0}) + P_{\Psi_0}$$

= $-s(\rho \circ \alpha_{\Phi}^t) + (\rho \circ \alpha_{\Phi}^t)(E_{\Psi_t}) + P_{\Psi_t} = s(\rho \circ \alpha_{\Phi}^t \mid \omega \circ \alpha_{\Phi}^t)$

How to tackle Conjecture R+SE

CL for relative entropy \Rightarrow Property SE

Let $\Psi_0\in\mathcal{B}_{\mathrm{sd}}$ and $\omega\in\mathcal{S}_{\mathrm{eq}}(\Psi_0)$ such that (ω,Ψ_0) regular. Recall that SE property means

$$s(\rho \mid \omega) = s(\rho \circ \alpha_{\Phi}^t \mid \omega) \qquad \forall t \in \mathbb{R} \ \ \forall \rho \in \mathcal{S}_{\mathrm{I}}$$

Assume CL for relative entropy: $s(\rho \,|\, \omega) = s(\rho \circ \alpha_{\Phi}^t \,|\, \omega \circ \alpha_{\Phi}^t) \quad \forall t \in \mathbb{R} \ \ \forall \rho \in \mathcal{S}_{\mathrm{I}}$

If ω is α_{Φ} -invariant, we recover SE property

CL for regularity ⇒ **CL** for relative entropy

Assume CL for regularity: (ω, Ψ_0) regular $\Rightarrow (\omega \circ \alpha_{\Phi}^t, \Psi_t)$ regular

We check that $P_{\Psi_t} = P_{\Psi_0}$ and $E_{\Psi_t} = \alpha_{\Phi}^{-t}(E_{\Psi_0})$. Thus $(\rho \circ \alpha_{\Phi}^t)(E_{\Psi_t}) = (\rho \circ \alpha_{\Phi}^t)(\alpha_{\Phi}^{-t}(E_{\Psi_0})) = \rho(E_{\Psi_0})$, so

$$s(\rho \mid \omega) = -s(\rho) + \rho(E_{\Psi_0}) + P_{\Psi_0}$$

= $-s(\rho \circ \alpha_{\Phi}^t) + (\rho \circ \alpha_{\Phi}^t)(E_{\Psi_t}) + P_{\Psi_t} = s(\rho \circ \alpha_{\Phi}^t \mid \omega \circ \alpha_{\Phi}^t)$

CL for regularity \Rightarrow CL for relative entropy \Rightarrow Property SE for α_{Φ} -inv. ω

CL for weak Gibbsianity

Definition of weak Gibbsianity

[Jakšić-Pillet-Tauber'24]

We call $\omega \in \mathcal{S}_I$ weak Gibbs for $\Psi \in \mathcal{B}_b$ if there exist a family of constants $\mathcal{C}_\Lambda > 0$ such that

$$C_{\Lambda}^{-1}\frac{\mathrm{e}^{-H_{\Lambda}(\Psi)}}{\mathrm{tr}\,\mathrm{e}^{-H_{\Lambda}(\Psi)}}\leq \omega_{\Lambda}\leq C_{\Lambda}\frac{\mathrm{e}^{-H_{\Lambda}(\Psi)}}{\mathrm{tr}\,\mathrm{e}^{-H_{\Lambda}(\Psi)}}\quad\text{ and }\quad \lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{\log C_{\Lambda}}{|\Lambda|}=0$$

- ullet We denote $\mathcal{S}_{\mathrm{wg}}(\Psi):=$ set of weak Gibbs states for Ψ
- $\omega \in \mathcal{S}_{\mathrm{wg}}(\Psi) \Rightarrow (\omega, \Psi)$ is regular $\Rightarrow \omega \in \mathcal{S}_{\mathrm{eq}}(\Psi)$

CL for weak Gibbsianity

[Jakšić–Pillet–S–Tauber'25]

Assume that $\Phi \in \mathcal{B}_{\mathrm{f}}$ and either

- (a) $d \geq 1$ and $\Psi_0 \in \mathcal{B}^{3r}$ for some r > 0 and such that $\|\Psi_0\|_r < r$, or
- (b) d=1 and $\Psi_0\in \mathcal{B}_{\mathrm{f}}.$

Then $\omega \in \mathcal{S}_{\mathrm{wg}}(\Psi_0) \Longrightarrow \omega \circ \alpha_{\Phi}^t \in \mathcal{S}_{\mathrm{wg}}(\Psi_t)$ for |t| small enough. In Case (b) this holds for all $t \in \mathbb{R}$.

CL for weak Gibbsianity

Definition of weak Gibbsianity

[Jakšić-Pillet-Tauber'24]

We call $\omega \in \mathcal{S}_I$ weak Gibbs for $\Psi \in \mathcal{B}_b$ if there exist a family of constants $C_\Lambda > 0$ such that

$$C_{\Lambda}^{-1}\frac{\mathrm{e}^{-H_{\Lambda}(\Psi)}}{\mathrm{tr}\,\mathrm{e}^{-H_{\Lambda}(\Psi)}}\leq \omega_{\Lambda}\leq C_{\Lambda}\frac{\mathrm{e}^{-H_{\Lambda}(\Psi)}}{\mathrm{tr}\,\mathrm{e}^{-H_{\Lambda}(\Psi)}}\quad\text{ and }\quad \lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{\log C_{\Lambda}}{|\Lambda|}=0$$

- ullet We denote $\mathcal{S}_{\mathrm{wg}}(\Psi):=$ set of weak Gibbs states for Ψ
- $\omega \in \mathcal{S}_{\mathrm{wg}}(\Psi) \Rightarrow (\omega, \Psi)$ is regular $\Rightarrow \omega \in \mathcal{S}_{\mathrm{eq}}(\Psi)$

CL for weak Gibbsianity

[Jakšić-Pillet-S-Tauber'25]

Assume that $\Phi \in \mathcal{B}_{\mathrm{f}}$ and either

- (a) $d \geq 1$ and $\Psi_0 \in \mathcal{B}^{3r}$ for some r > 0 and such that $\|\Psi_0\|_r < r$, or
- (b) d=1 and $\Psi_0\in \mathcal{B}_{\mathrm{f}}.$

Then $\omega \in \mathcal{S}_{\mathrm{wg}}(\Psi_0) \Longrightarrow \omega \circ \alpha_{\Phi}^t \in \mathcal{S}_{\mathrm{wg}}(\Psi_t)$ for |t| small enough. In Case (b) this holds for all $t \in \mathbb{R}$.

Recall **Thm**: If $\Psi_0 \in \mathcal{B}^r$ with $\|\Psi_0\|_r < r$, or $\Psi_0 \in \mathcal{B}_{\mathrm{f}}$ in d=1, then

$$\omega \in \mathcal{S}_{\mathrm{eq}}(\Psi_0) \; \Leftrightarrow \; (\omega, \Psi_0) \; \mathsf{regular} \; \Leftrightarrow \; \omega \in \mathcal{S}_{\mathrm{wg}}(\Psi_0)$$

[Jakšić-Pillet-Tauber'24]

Hence, in this context: CL for weak Gibbsianity = CL for regularity, and Conjecture R holds!

Partial solution to Conjecture R+SE

CL for weak Gibbsianity = CL for regularity \Rightarrow CL for relative entropy \Rightarrow Property SE for α_{Φ} -inv. ω

CL for relative entropy

[Jakšić-Pillet-S-Tauber'25]

Under the same assumptions as CL for weak Gibbsianity:

$$\forall
ho \in \mathcal{S}_{\mathrm{I}} \qquad s(
ho \mid \omega) = s(
ho \circ lpha_{\Phi}^t \mid \omega \circ lpha_{\Phi}^t) \quad ext{for} \quad |t| < T_0 \qquad (ext{in dim one } T_0 = \infty)$$

If in addition ω is α_{Φ} -invariant, one can take $T_0=\infty$. (Because then $\omega\circ\alpha_{\Phi}^t=\omega\in\mathcal{S}_{\mathrm{wg}}(\Psi_0)$ for all $t\in\mathbb{R}$.)

Partial solution to Conjecture R+SE

[Jakšić-Pillet-S-Tauber'25]

Conjecture R+SE holds under the same assumptions as CL for weak Gibbsianity, provided that ω is $lpha_\Phi^t$ -inv

CL for regularity/weak Gibbsianity \Rightarrow CL for relative entropy \Rightarrow Conjecture R+SE

(small time) (small time)

(all times for α_{Φ} -invariant state ω)

Recall we apply R+SE to $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$, which is α_{Φ} -invariant!

State of the art for Conjectures

Basic CLs for specific energy and entropy

Hold for either

- (a) $\Phi \in \mathcal{B}^r$ with r > 0, or
- (b) $\Phi \in \mathcal{B}_{\gamma}^{ ext{diam}}$ with $\gamma > 2d$.

Conjecture SD

Holds for $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$ and $\Psi \in \mathcal{B}_{\gamma'}^{\mathrm{diam}}$ with $\gamma' > d$.

Conjecture SD+

Holds for $\Phi, \Psi \in \mathcal{B}_f$.

Conjecture R+SE

Holds for $\Phi \in \mathcal{B}_{\mathrm{f}}$ and either

- (a) $d \geq 1$ and $\Psi \in \mathcal{B}^{3r}$ for some r > 0 and such that $\|\Psi\|_r < r$, or
- (b) d=1 and $\Psi\in\mathcal{B}_{\mathrm{f}}.$

and when ω is α_{Φ} -invariant.

CL for weak Gibbsianity: proof overview

We work under the assumptions for CL for weak Gibbsianity. We denote $\omega_t := \omega \circ \alpha_\Phi^t$

Characterization of weak Gibbsianity

[Jakšić-Pillet-Tauber'24]

$$\omega_t \in \mathcal{S}_{\text{wg}}(\Psi_t) \iff \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log \inf_{\substack{A \in \mathcal{U}_{\Lambda} \\ A > 0}} \frac{\omega_t(A)}{(\omega_t)_{-W_t(\Lambda)}(A)} = \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log \sup_{\substack{A \in \mathcal{U}_{\Lambda} \\ A > 0}} \frac{\omega_t(A)}{(\omega_t)_{-W_t(\Lambda)}(A)} = 0$$

Key bound

[Lenci-Rey-Bellet'05]

For any $A \in \mathcal{U}_{\Lambda}$ such that A > 0

$$\exp(-\|W_t(\Lambda)\| - \|\alpha_{-W_t(\Lambda)}^{i/2}(W_t(\Lambda))\|) \leq \frac{\omega_t(A)}{(\omega_t)_{-W_t(\Lambda)}(A)} \leq \exp(\|W_t(\Lambda)\| + \|\alpha^{i/2}(W_t(\Lambda))\|)$$

Recall the SD property holds: $\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\|W_t(\Lambda)\|=0 \quad \forall t\in\mathbb{R}$

We need to show
$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\|\alpha^{\mathrm{i}/2}(W_t(\Lambda))\|=0$$
 and $\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\|\alpha^{\mathrm{i}/2}_{-W_t(\Lambda)}(W_t(\Lambda))\|=0$ (at least for small time)

Ruelle's bound ('69)

Let $A \in \mathcal{U}_{\text{loc}}$ and $\Psi \in \mathcal{B}^r$. The map $\mathbb{R} \ni s \mapsto \alpha_{\Psi}^s(A) \in \mathcal{U}$ extends analytically to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$.

For any z in this strip $\|\alpha_{\Psi}^z(A)\| \leq \|A\| \mathrm{e}^{r|\operatorname{supp} A|} C_{z,\Psi}$ with $C_{z,\Psi} = (1 - \frac{2}{r} \|\Psi\|_r |\operatorname{Im} z|)^{-1}$.

$$\|\alpha^{z}(A)\| = \|\alpha_{\Psi_{\mathbf{0}}}^{z} \circ \alpha_{\Phi}^{t}(A)\|$$

$$\alpha_{\Phi}^{t}(A) = \sum_{n=0}^{\infty} \frac{(\mathrm{i}t)^{n}}{n!} \sum_{Y_{1}, \dots, Y_{n} \subset \mathbb{Z}^{d}} [\Phi(Y_{n}) \dots [\Phi(Y_{2}), [\Phi(Y_{1}), A]]]$$

Baker-Campbell-Hausdorff Formula

Ruelle's bound ('69)

Let $A \in \mathcal{U}_{\mathrm{loc}}$ and $\Psi \in \mathcal{B}^r$. The map $\mathbb{R} \ni s \mapsto \alpha_{\Psi}^s(A) \in \mathcal{U}$ extends analytically to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$.

For any z in this strip $\|\alpha_{\Psi}^z(A)\| \leq \|A\| \mathrm{e}^{r|\operatorname{supp} A|} C_{z,\Psi}$ with $C_{z,\Psi} = (1 - \frac{2}{r} \|\Psi\|_r |\operatorname{Im} z|)^{-1}$.

$$\|\alpha^{z}(A)\| = \|\alpha_{\Psi_{\mathbf{0}}}^{z} \circ \alpha_{\Phi}^{t}(A)\|$$

$$\alpha_{\Psi_0}^z \circ \alpha_{\Phi}^t(A) = \sum_{n=0}^{\infty} \frac{(\mathrm{i} t)^n}{n!} \sum_{Y_n \in \mathbb{Z}^d} \alpha_{\Psi_0}^z [\Phi(Y_n) \dots [\Phi(Y_2), [\Phi(Y_1), A]]]$$
 Baker-Campbell-Hausdorff Formula

Ruelle's bound ('69)

Let $A \in \mathcal{U}_{\mathrm{loc}}$ and $\Psi \in \mathcal{B}^r$. The map $\mathbb{R} \ni s \mapsto \alpha_{\Psi}^s(A) \in \mathcal{U}$ extends analytically to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$.

For any z in this strip $\|\alpha_{\Psi}^z(A)\| \leq \|A\|e^{r|\operatorname{supp} A|}C_{z,\Psi}$ with $C_{z,\Psi} = (1-\frac{2}{r}\|\Psi\|_r|\operatorname{Im} z|)^{-1}$.

$$\|\alpha^{z}(A)\| = \|\alpha_{\Psi_{\mathbf{0}}}^{z} \circ \alpha_{\Phi}^{t}(A)\| \leq \sum_{n=0}^{\infty} \frac{|t|^{n}}{n!} \sum_{Y_{1}, \dots, Y_{n} \in \mathbb{Z}^{d}} \|\alpha_{\Psi_{\mathbf{0}}}^{z}[\Phi(Y_{n}) \dots [\Phi(Y_{2}), [\Phi(Y_{1}), A]]]\|$$

$$\alpha_{\Psi_{\mathbf{0}}}^{z} \circ \alpha_{\Phi}^{t}(A) = \sum_{n=0}^{\infty} \frac{(it)^{n}}{n!} \sum_{Y_{1}, \dots, Y_{n} \subset \mathbb{Z}^{d}} \alpha_{\Psi_{\mathbf{0}}}^{z}[\Phi(Y_{n}) \dots [\Phi(Y_{2}), [\Phi(Y_{1}), A]]]$$

Baker-Campbell-Hausdorff Formula

Ruelle's bound ('69)

Let $A \in \mathcal{U}_{\mathrm{loc}}$ and $\Psi \in \mathcal{B}^r$. The map $\mathbb{R} \ni s \mapsto \alpha_{\Psi}^s(A) \in \mathcal{U}$ extends analytically to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$.

For any z in this strip $\|\alpha_{\Psi}^z(A)\| \leq \|A\|e^{r|\operatorname{supp} A|}C_{z,\Psi}$ with $C_{z,\Psi} = (1 - \frac{2}{r}\|\Psi\|_r|\operatorname{Im} z|)^{-1}$.

$$\|\alpha^{z}(A)\| = \|\alpha_{\Psi_{\mathbf{0}}}^{z} \circ \alpha_{\Phi}^{t}(A)\| \leq \sum_{n=0}^{\infty} \frac{|t|^{n}}{n!} \sum_{Y_{n} = Y_{n} \in \mathbb{Z}^{d}} \|\alpha_{\Psi_{\mathbf{0}}}^{z}[\Phi(Y_{n}) \dots [\Phi(Y_{2}), [\Phi(Y_{1}), A]]]\|$$

$$\alpha_{\Psi_{\mathbf{0}}}^{\mathbf{z}} \circ \alpha_{\Phi}^{t}(A) = \sum_{n=0}^{\infty} \frac{(\mathrm{i}\,t)^{n}}{n!} \sum_{\substack{(Y_{1},\ldots,Y_{n})\\ (Y_{1},\ldots,Y_{n})}} \alpha_{\Psi_{\mathbf{0}}}^{\mathbf{z}}[\Phi(Y_{n})\ldots[\Phi(Y_{2}),[\Phi(Y_{1}),A]]]$$
 Baker-Campbell-Hausdorff Formula

Ruelle's bound ('69)

Let $A \in \mathcal{U}_{\mathrm{loc}}$ and $\Psi \in \mathcal{B}^r$. The map $\mathbb{R} \ni s \mapsto \alpha_{\Psi}^s(A) \in \mathcal{U}$ extends analytically to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$.

For any z in this strip $\|\alpha_{\Psi}^z(A)\| \leq \|A\|e^{r|\operatorname{supp} A|}C_{z,\Psi}$ with $C_{z,\Psi} = (1 - \frac{2}{r}\|\Psi\|_r|\operatorname{Im} z|)^{-1}$.

$$\|\alpha^{z}(A)\| = \|\alpha_{\Psi_{\mathbf{0}}}^{z} \circ \alpha_{\Phi}^{t}(A)\| \leq \sum_{n=0}^{\infty} \frac{|t|^{n}}{n!} \sum_{\substack{(Y_{1}, \dots, Y_{n}) \\ \text{chained to } A}} \|\alpha_{\Psi_{\mathbf{0}}}^{z}[\Phi(Y_{n}) \dots [\Phi(Y_{2}), [\Phi(Y_{1}), A]]]\|$$

$$\alpha_{\Psi_0}^z \circ \alpha_{\Phi}^t(A) = \sum_{n=0}^{\infty} \frac{(\mathrm{i}\,t)^n}{n!} \sum_{\substack{(Y_1,\dots,Y_n)\\ Y_1,\dots,Y_n)}} \alpha_{\Psi_0}^z[\Phi(Y_n)\dots[\Phi(Y_2),[\Phi(Y_1),A]]] \qquad \mathsf{Baker-College}$$

 $Baker\text{-}Campbell\text{-}Hausdorff\ Formula$

Ruelle's bound ('69)

Let $A \in \mathcal{U}_{\text{loc}}$ and $\Psi \in \mathcal{B}^r$. The map $\mathbb{R} \ni s \mapsto \alpha_{\Psi}^s(A) \in \mathcal{U}$ extends analytically to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$.

For any z in this strip $\|\alpha_{\Psi}^z(A)\| \leq \|A\| \mathrm{e}^{r|\mathsf{supp} A|} C_{z,\Psi}$ with $C_{z,\Psi} = (1 - \frac{2}{r} \|\Psi\|_r |\operatorname{Im} z|)^{-1}$.

$$\|\alpha^z(A)\| = \|\alpha^z_{\Psi_0} \circ \alpha^t_{\Phi}(A)\| \leq \sum_{n=0}^{\infty} \frac{|t|^n}{n!} \sum_{\substack{(Y_1, \dots, Y_n) \\ \text{chained to } A}} \left\|\alpha^z_{\Psi_0}[\Phi(Y_n) \dots [\Phi(Y_2), [\Phi(Y_1), A]]]\right\| \quad \text{$/$ bound the commutator } \|\alpha^z_{\Psi_0}[\Phi(Y_n) \dots [\Phi(Y_n), A]]\|$$

$$\leq \|\alpha_{\Psi_{\mathbf{0}}}^{z}(A)\|\sum_{n=0}^{\infty} \frac{(2|t|)^{n}}{n!} \sum_{\substack{(Y_{1},\ldots,Y_{n})\\ \text{chained to } A}} \prod_{i=1}^{n} \|\alpha_{\Psi_{\mathbf{0}}}^{z}(\Phi(Y_{i}))\|$$

$$\alpha_{\Psi_0}^z \circ \alpha_{\Phi}^t(A) = \sum_{n=0}^{\infty} \frac{(\mathrm{i} t)^n}{n!} \sum_{\substack{(Y_1,\ldots,Y_n) \\ Y_2,\ldots,Y_n)}} \alpha_{\Psi_0}^z[\Phi(Y_n)\ldots[\Phi(Y_2),[\Phi(Y_1),A]]]$$
 Baker-Campbell-Hausdorff Formula

Ruelle's bound ('69)

Let $A \in \mathcal{U}_{\text{loc}}$ and $\Psi \in \mathcal{B}^r$. The map $\mathbb{R} \ni s \mapsto \alpha_{\Psi}^s(A) \in \mathcal{U}$ extends analytically to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$.

For any z in this strip $\|\alpha_{\Psi}^z(A)\| \leq \|A\|e^{r|\operatorname{supp} A|}C_{z,\Psi}$ with $C_{z,\Psi} = (1 - \frac{2}{r}\|\Psi\|_r|\operatorname{Im} z|)^{-1}$.

$$\|\alpha^z(A)\| = \|\alpha^z_{\Psi_0} \circ \alpha^t_{\Phi}(A)\| \leq \sum_{n=0}^{\infty} \frac{|t|^n}{n!} \sum_{\substack{(Y_1,\ldots,Y_n) \text{ chained to } A}} \left\|\alpha^z_{\Psi_0}[\Phi(Y_n)\ldots[\Phi(Y_2),[\Phi(Y_1),A]]]\right\| \qquad \text{/ bound the commutator } \|\alpha^z_{\Psi_0}[\Phi(Y_n)\ldots\Phi(Y_n),[\Phi(Y_n),A]]\|$$

$$\leq \|\alpha_{\Psi_0}^z(A)\| \sum_{n=0}^\infty \frac{(2|t|)^n}{n!} \sum_{\substack{(Y_1,\ldots,Y_n) \\ \text{chained to } A}} \prod_{i=1}^n \|\alpha_{\Psi_0}^z(\Phi(Y_i))\| \qquad \text{/ use Ruelle's bound for } \Psi_0$$

$$\|\alpha_{\Psi_{\mathbf{0}}}^{z}(\Phi(Y_{i}))\| \leq \|\Phi(Y_{i})\| \mathrm{e}^{r|Y_{i}|} C_{z,\Psi_{\mathbf{0}}} \leq \|\Phi(Y_{i})\| \mathrm{e}^{r(\mathsf{range}\,\Phi)^{d}} C_{z,\Psi_{\mathbf{0}}}$$

Ruelle's bound & $\Phi \in \mathcal{B}_{\mathrm{f}}$

Ruelle's bound ('69)

Let $A \in \mathcal{U}_{\mathrm{loc}}$ and $\Psi \in \mathcal{B}^r$. The map $\mathbb{R} \ni s \mapsto \alpha_{\Psi}^s(A) \in \mathcal{U}$ extends analytically to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$.

For any z in this strip $\|\alpha_{\Psi}^z(A)\| \leq \|A\| \mathrm{e}^{r|\operatorname{supp} A|} C_{z,\Psi}$ with $C_{z,\Psi} = (1 - \frac{2}{r} \|\Psi\|_r |\operatorname{Im} z|)^{-1}$.

$$\begin{split} \|\alpha^z(A)\| &= \|\alpha^z_{\Psi_0} \circ \alpha^t_{\Phi}(A)\| \leq \sum_{n=0}^{\infty} \frac{|t|^n}{n!} \sum_{\substack{(Y_1,\dots,Y_n) \\ \text{chained to } A}} \left\|\alpha^z_{\Psi_0}[\Phi(Y_n)\dots[\Phi(Y_2),[\Phi(Y_1),A]]]\right\| \quad \text{/ bound the commutator} \\ &\leq \|\alpha^z_{\Psi_0}(A)\| \sum_{n=0}^{\infty} \frac{(2|t|)^n}{n!} \sum_{\substack{(Y_1,\dots,Y_n) \\ \text{otherwise}}} \prod_{i=1}^n \|\alpha^z_{\Psi_0}(\Phi(Y_i))\| \quad \text{/ use Ruelle's bound for } \Psi_0 \end{split}$$

$$\leq C_{z,\Psi_0} \|A\| \mathrm{e}^{r|\mathsf{supp}A|} \sum_{n=0}^{\infty} \frac{(2|t| \mathrm{e}^{r(\mathsf{range}\,\Phi)^d} C_{z,\Psi_0})^n}{n!} \sum_{\substack{(Y_1,\ldots,Y_n) \\ \mathsf{chained} \; \mathsf{to} \; A}} \prod_{i=1}^n \|\Phi(Y_i)\|$$

$$\|\alpha_{\Psi_{\boldsymbol{0}}}^{z}(\Phi(Y_{i}))\| \leq \|\Phi(Y_{i})\| \mathrm{e}^{r|Y_{i}|} C_{z,\Psi_{\boldsymbol{0}}} \leq \|\Phi(Y_{i})\| \mathrm{e}^{r(\mathsf{range}\,\Phi)^{d}} C_{z,\Psi_{\boldsymbol{0}}}$$

Ruelle's bound & $\Phi \in \mathcal{B}_{\mathrm{f}}$

Ruelle's bound ('69)

Let $A \in \mathcal{U}_{\text{loc}}$ and $\Psi \in \mathcal{B}^r$. The map $\mathbb{R} \ni s \mapsto \alpha_{\Psi}^s(A) \in \mathcal{U}$ extends analytically to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$.

For any z in this strip $\|\alpha_{\Psi}^z(A)\| \leq \|A\| \mathrm{e}^{r|\mathrm{supp}A|} C_{z,\Psi}$ with $C_{z,\Psi} = (1 - \frac{2}{r} \|\Psi\|_r |\operatorname{Im} z|)^{-1}$.

$$\|\alpha^z(A)\| = \|\alpha^z_{\Psi_0} \circ \alpha^t_{\Phi}(A)\| \leq \sum_{n=0}^{\infty} \frac{|t|^n}{n!} \sum_{\substack{(Y_1, \dots, Y_n) \\ \text{chained to } A}} \left\|\alpha^z_{\Psi_0}[\Phi(Y_n) \dots [\Phi(Y_2), [\Phi(Y_1), A]]]\right\| \quad \text{$/$ bound the commutator }$$

$$\leq \|\alpha_{\Psi_0}^z(A)\| \sum_{n=0}^\infty \frac{(2|t|)^n}{n!} \sum_{\substack{(Y_1,\ldots,Y_n) \text{chained to } A}} \prod_{i=1}^n \|\alpha_{\Psi_0}^z(\Phi(Y_i))\| \qquad \text{/ use Ruelle's bound for } \Psi_0$$

$$\leq C_{z,\Psi_0}\|A\|\mathrm{e}^{r|\mathsf{supp}A|}\sum_{n=0}^{\infty}\frac{(2|t|\mathrm{e}^{r(\mathsf{range}\,\Phi)^d}C_{z,\Psi_0})^n}{n!}\sum_{\substack{(Y_1,\ldots,Y_n)\\\mathsf{chained}\;\mathsf{to}\;A}}\prod_{i=1}^n\|\Phi(Y_i)\|\quad\text{/ Ruelle's lemma}$$

$$\forall_{n\geq 1} \qquad \sum_{\substack{(Y_1,\ldots,Y_n)\\ 1\leq i,\ldots,d}} \prod_{j=1}^n \|\Phi(Y_j)\| \leq \frac{n!}{n!} e^{r|\sup pA|} \left(\frac{1}{r} \|\Phi\|_r\right)^n$$

Ruelle's lemma

CL for weak Gibbsianity: Ruelle's bound

Ruelle's bound ('69)

Let $A \in \mathcal{U}_{\text{loc}}$ and $\Psi \in \mathcal{B}^r$. The map $\mathbb{R} \ni s \mapsto \alpha_{\Psi}^s(A) \in \mathcal{U}$ extends analytically to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$.

For any z in this strip $\|\alpha_{\Psi}^z(A)\| \leq \|A\| \mathrm{e}^{r|\mathrm{supp}A|} C_{z,\Psi}$ with $C_{z,\Psi} = (1 - \frac{2}{r} \|\Psi\|_r |\operatorname{Im} z|)^{-1}$.

$$\|\alpha^z(A)\| = \|\alpha^z_{\Psi_0} \circ \alpha^t_{\Phi}(A)\| \leq \sum_{n=0}^{\infty} \frac{|t|^n}{n!} \sum_{\substack{(Y_1,\dots,Y_n) \\ \text{chained to } A}} \left\|\alpha^z_{\Psi_0}[\Phi(Y_n)\dots[\Phi(Y_2),[\Phi(Y_1),A]]]\right\| \quad \text{$/$ bound the commutator }$$

$$\leq \|\alpha_{\Psi_0}^z(A)\|\sum_{n=0}^{\infty} \frac{(2|t|)^n}{n!} \sum_{\substack{(Y_1,\ldots,Y_n) \\ \text{chained to } A}} \prod_{i=1}^n \|\alpha_{\Psi_0}^z(\Phi(Y_i))\| \qquad \text{/ use Ruelle's bound for } \Psi_0$$

$$\leq C_{z,\Psi_0} \|A\| \mathrm{e}^{r|\operatorname{supp} A|} \sum_{n=0}^{\infty} \frac{(2|t| \mathrm{e}^{r(\operatorname{range} \Phi)^d} C_{z,\Psi_0})^n}{n!} \sum_{\substack{(Y_1,\ldots,Y_n) \\ \text{chained to } A}} \prod_{i=1}^n \|\Phi(Y_i)\|$$

chained to
$$A$$

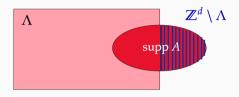
$$\leq C_{z,\Psi_{\mathbf{0}}} \|A\| \mathrm{e}^{2r|\mathrm{supp}A|} (1-|t|/\mathcal{T}_0)^{-1} \quad \text{with} \quad \mathcal{T}_0 = \left(\frac{2}{r} \|\Phi\|_r \mathrm{e}^{r(\mathrm{range}\,\Phi)^d} C_{z,\Psi_{\mathbf{0}}}\right)^{-1}$$

$$\forall_{n\geq 1}$$

$$\sum_{r} \prod_{i=1}^{n} \|\Phi(Y_i)\| \leq \frac{n!}{r} e^{r|\operatorname{supp} A|} \left(\frac{1}{r} \|\Phi\|_r\right)^n$$
 Ruelle's lemma

CL for weak Gibbsianity: Ruelle's bound vs. perturbed dynamics

Perturbed dynamics is much more problematic. Note that $\alpha^s_{-W_{\Lambda}(t)}(A) = \alpha^s_{\mathbb{Z}^d \setminus \Lambda} \circ \alpha^s_{\Lambda}(A)$.



If we applied the previous result:

$$\|\alpha_{\mathbb{Z}^d\setminus\Lambda}^s(\alpha_{\Lambda}^s(A))\| \leq c_t \|\alpha_{\Lambda}^s(A)\| \exp(2r|\mathsf{supp}\;\alpha_{\Lambda}^s(A)|) \leq c_t \|\alpha_{\Lambda}^s(A)\| \exp(2r|\mathsf{supp}A\cup\Lambda|)$$

Instead of $\exp(|\sup A \cup \Lambda|)$ we should see

$$\exp(|(\operatorname{supp} A \cup \Lambda) \cap (\mathbb{Z}^d \setminus \Lambda)|) \le \exp(|\operatorname{supp} A|)$$

Conclusion

We need a generalization of Ruelle's bound for restricted dynamics $\alpha_K^s = \alpha_{\Phi|_K}^{-t} \circ \alpha_{\Psi_0|_K}^s \circ \alpha_{\Phi|_K}^t$, $K \subset \mathbb{Z}^d$.

CL for weak Gibbsianity: Ruelle's bound generalized

Let $K \subset \mathbb{Z}^d$ and $A \in \mathcal{U}_{loc}$. Recall that $\alpha_K^s = \alpha_{\Phi|_K}^{-t} \circ \alpha_{\Psi_{\mathbf{0}}|_K}^s \circ \alpha_{\Phi|_K}^t$.

Ruelle's bound generalized

[Jakšić-Pillet-S-Tauber'25]

Assume $\Psi \in \mathcal{B}^r$. The map

$$\mathbb{R}\ni s\mapsto lpha_{\Psi|_{\mathcal{K}}}^{s}(A)\in\mathcal{U}$$

has an analytic extension to the strip $|\operatorname{Im} z| < rac{r}{2\|\Psi\|_r}$. For any z in this strip

$$\|\alpha_{\Psi|_K}^z(A)\| \leq \|A\| \exp(r|\mathrm{supp}A \cap K|) C_{z,\Psi} \quad \text{with} \quad C_{z,\Psi} = (1 - \frac{2}{r} \|\Psi\|_r |\operatorname{Im} z|)^{-1}.$$

CL for weak Gibbsianity: Ruelle's bound generalized

Let $K \subset \mathbb{Z}^d$ and $A \in \mathcal{U}_{loc}$. Recall that $\alpha_K^s = \alpha_{\Phi|_K}^{-t} \circ \alpha_{\Psi_{\mathbf{0}}|_K}^s \circ \alpha_{\Phi|_K}^t$.

Ruelle's bound generalized

[Jakšić-Pillet-S-Tauber'25]

Assume $\Psi \in \mathcal{B}^r$. The map

$$\mathbb{R}\ni s\mapsto lpha_{\Psi|_K}^s(A)\in\mathcal{U}$$

has an analytic extension to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$. For any z in this strip

$$\|\alpha_{\Psi|_K}^z(A)\| \le \|A\| \exp(r|\sup A \cap K|) C_{z,\Psi}$$
 with $C_{z,\Psi} = (1 - \frac{2}{r} \|\Psi\|_r |\operatorname{Im} z|)^{-1}$.

Ruelle's bound for composite dynamics

[Jakšić-Pillet-S-Tauber'25]

Assume $\Psi_0 \in \mathcal{B}^{3r}$ such that $\|\Psi_0\|_r < r$ and $\Phi \in \mathcal{B}_f$. Set $R = \text{range } \Phi$ and $T_0 = \left(\frac{2}{r}\|\Phi\|_r C_{z,\Psi_0} \mathrm{e}^{rR^d}\right)^{-1}$.

For all $|t| < T_0$ the map

$$\mathbb{R}\ni s\mapsto \alpha_K^s(A)$$

has an analytic extension to the strip $|\operatorname{Im} z| < \frac{r}{2||\Psi_0||_r}$. For any z in this strip

$$\|\alpha_K^z(A)\| \le \|A\| \exp(2r|\sup A \cap K|) C_{z,\Psi_0} (1-|t|/T_0)^{-1}.$$

CL for weak Gibbsianity: Araki's bound in dim = 1

Let $\Psi \in \mathcal{B}_{\mathrm{f}}$ and $A \in \mathcal{U}_{\mathrm{lo}\,\mathrm{c}}$. Define

$$F_n(x) := \exp\left((n-R+1)x + 2\sum_{r=1}^R \frac{\exp(rx) - 1}{r}\right)$$
 with $R := \operatorname{range} \Psi$

Araki's bound ('69)

The map $\mathbb{R}\ni s\mapsto lpha_\Psi^s(A)$ has an analytic extension to the whole complex plane, and for any $z\in\mathbb{C}$

$$\|\alpha_{\Psi}^{z}(A)\| \leq F_{n}(C_{\Psi}|z|)\|A\|,$$

where $n = \max\{\operatorname{diam}(\operatorname{supp} A), R-1\}$ and $C_{\Psi} = 2(R+1)\|\Psi\|_{\mathrm{s}}$

CL for weak Gibbsianity: Araki's bound in dim = 1

Let $\Psi \in \mathcal{B}_{\mathrm{f}}$ and $A \in \mathcal{U}_{\mathrm{loc}}$. Define

$$F_n(x) := \exp\left((n-R+1)x + 2\sum_{r=1}^R \frac{\exp(rx)-1}{r}\right)$$
 with $R := \operatorname{range} \Psi$

Araki's bound ('69)

The map $\mathbb{R}\ni s\mapsto lpha^s_{\Psi}(A)$ has an analytic extension to the whole complex plane, and for any $z\in\mathbb{C}$

$$\|\alpha_{\Psi}^{z}(A)\| \leq F_{n}(C_{\Psi}|z|)\|A\|,$$

where $n = \max\{\operatorname{diam}(\operatorname{supp} A), R - 1\}$ and $C_{\Psi} = 2(R + 1)\|\Psi\|_{\mathrm{s}}$

Araki's bound generalized

[Jakšić-Pillet-S-Tauber'25]

Let $K \subset \mathbb{Z}$. Then $\mathbb{R} \ni s \mapsto lpha_{\Psi|_K}^s(A)$ has an analytic extension to the whole complex plane and for any $z \in \mathbb{C}$

$$\|\alpha_{\Psi|_K}^z(A)\| \leq F_n(C_{\Psi}|z|)\|A\|,$$

where $n=\mathsf{max}\{\mathrm{diam}(\mathsf{supp}A\cap K),R-1\}$ and $C_\Psi=2(R+1)\|\Psi\|_{\mathrm{s}}$

CL for weak Gibbsianity: proof recap

Characterization & Key bound

[Jakšić-Pillet-Tauber'24] & [Lenci-Rey-Bellet'05]

For any $A \in \mathcal{U}_{\Lambda}$ such that A > 0

$$-\frac{1}{|\Lambda|}\|\mathcal{W}_t(\Lambda)\|-\frac{1}{|\Lambda|}\|\alpha_{-\mathcal{W}_t(\Lambda)}^{i/2}(\mathcal{W}_t(\Lambda))\|\leq \frac{1}{|\Lambda|}\log\frac{\omega_t(A)}{(\omega_t)_{-\mathcal{W}_t(\Lambda)}(A)}\leq \frac{1}{|\Lambda|}\|\mathcal{W}_t(\Lambda)\|+\frac{1}{|\Lambda|}\|\alpha^{i/2}(\mathcal{W}_t(\Lambda))\|$$

Then $\omega_t \in \mathcal{S}_{\text{wg}}(\Psi_t)$ if both bounds go to zero as $\Lambda \uparrow \mathbb{Z}^d$.

- $\bullet \ \mbox{We know the SD property holds:} \ \ \lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\|\mbox{$W_t(\Lambda)$}\|=0,$
- Using Ruelle/Araki generalized bounds for composite dynamics we get

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\|\alpha^{i/2}(W_t(\Lambda))\|=0\quad \text{ and }\quad \lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\|\alpha^{i/2}_{-W_\Lambda(t)}(W_t(\Lambda))\|=0.$$

CL for weak Gibbsianity holds

$$\omega_t \in \mathcal{S}_{\mathrm{wg}}(\Psi_t)$$
 for

- (a) $|t| < \mathcal{T}_0$ if $\Psi \in \mathcal{B}^{3r}$ with $\|\Psi\|_r < r$, and $\Phi \in \mathcal{B}_{\mathrm{f}}$ (Ruelle's bound)
- (b) $t \in \mathbb{R}$ if d=1 and $\Psi, \Phi \in \mathcal{B}_{\mathrm{f}}$ (Araki's abound)

Back to Approach to Thermal Equilibrium

Let $\omega \in \mathcal{S}_{\mathrm{I}}$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$.

Theorem

Jakšić, Pillet, S, Tauber '25

Assume that $S_{\rm eq}(\beta_*\Phi)=\{\nu_{\rm eq}\}$ with $(\nu_{\rm eq},\beta_*\Phi)$ regular, and that ω is admissible for $\nu_{\rm eq}$.

For $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$, the following statements are equivalent:

- (1) $\omega_+ =
 u_{
 m eq}$
- (2) $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(\Psi_+)$ with $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$ such that (ω_+, Ψ_+) is regular, and $E_{\Psi_+} \in \mathfrak{C}$.
 - ullet Recall $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$ is a minimal physicality requirement.
 - If Conjecture R holds, then (ω_+, Ψ_+) is regular.
 - ullet If either Conjecture SD or Conjecture R+SE holds, then $E_{\Psi_+}\in \mathfrak{C}.$

Thus, assuming the conjectures and a physically relevant setting, Approach to Thermal Equilibrium follows!

Key questions now:

- When do these conjectures hold (if at all...)?
- What about SD+?

ATE in non-integrable systems

ATE in non-integrable systems

Let $\omega \in \mathcal{S}_{\mathrm{I}}$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$.

Theorem

Jakšić, Pillet, S, Tauber '25

Assume $\mathcal{S}_{\mathrm{eq}}(\beta_*\Phi)=\{\nu_{\mathrm{eq}}\}$ with $(\nu_{\mathrm{eq}},\beta_*\Phi)$ regular, and E_Φ is the unique constant of motion (up to \sim).

Let $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$ and assume that $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(\Psi_+)$ with $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$ and $\mathcal{E}_{\Psi_+} \in \mathfrak{C}$. Then $\omega_+ = \nu_{\mathrm{eq}}$.

- Recent results proving that non-integrability, i.e., unique constant of motion, is generic for a large class
 of models: [Shiraishi'19], [Chiba'24], [Yamaguchi, Chiba, Shiraishi'24], [Chiba'25], [Shiraishi, Tasaki'25] & more
- Characterization of $\mathfrak C$ via Property SD+ allows us to connect with these results and prove that the mixed-field Ising chain has a unique constant of motion.

Plan of the last talk

- 1. JS proof strategy & results for the Ising chain
- 2. Connecting the two setups & adapting the proof
- 3. Summary of JS results for other models

Overview of JS method & results for Ising chain

JS-Constants of Motion

- Consider $\Lambda_0=\{1,\cdots,N\}$ with **periodic boundary condition**. For $S\subset\Lambda_0$ set $D(S)=\max_{i,j\in S}|i-j|_{\mathrm{per}}$
- To each site $i \in \Lambda_0$ attach $\mathcal{H}_i = \mathbb{C}^2$, then $\mathcal{H}_{\Lambda_0} = \bigotimes_{i \in \Lambda_0} \mathcal{H}_i$ and $\mathcal{U}_{\Lambda_0} = \text{bounded operators on } \mathcal{H}_{\Lambda_0}$
- X_i, Y_i, Z_i denote the elements of \mathcal{U}_{Λ_0} acting as the usual Pauli matrices on site i and as \mathbb{I} elsewhere.

We consider Hamiltonians of the form

$$H = \sum_{i=1}^{N} (J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + J_Z Z_i Z_{i+1}) + \sum_{i=1}^{N} (h_X X_i + h_Y Y_i + h_Z Z_i),$$

where $J_X, J_Y, J_Z, h_X, h_Y, h_Z$ are real constants independent of i, and N+1 is identified with 1.

Definition: JS-Constants of Motion

We say that $Q \in \mathcal{U}_{\Lambda_0}$ is a JS-Constant of Motion (JS-CM) if [H, Q] = 0.

Examples: \mathbb{I} and H and all (linear combinations of) spectral projections of H.

To get physically relevant results we introduce a **locality requirement** on JS-CM.

Locality requirement on JS-CM

We denote by \mathcal{P}_{Λ_0} the set of all strings of Pauli basis matrices acting on Λ_0 :

$$\mathcal{P}_{\Lambda_{f 0}} = \left\{ A = igotimes_{i=1}^N A_i \;\; ext{where} \;\; A_i \in \{X_i, Y_i, Z_i, \mathbb{I}\}
ight\}$$

 $\mathcal{P}_{\Lambda_{\mathbf{0}}}$ is a basis of $\mathcal{U}_{\Lambda_{\mathbf{0}}}$. For $A \in \mathcal{P}_{\Lambda_{\mathbf{0}}}$ we define $\operatorname{supp} A = \{i \in \Lambda_{\mathbf{0}} \, | \, A_i \neq \mathbb{I}\}$ and

the diameter/length of A as $D(A) = D(\operatorname{supp} A)$

(respecting periodicity!)

ℓ-supported observable

For $\ell \in \mathbb{N}$ we say that $Q \in \mathcal{U}_{\Lambda_0}$ is ℓ -supported if $Q = \sum_{\substack{A \in \mathcal{P}_{\Lambda_0} \\ D(A) \leq \ell}} q_A A$, and $q_A \neq 0$ for some A with $D(A) = \ell$.

We are interested in ℓ -supported JS-CM's. Examples: H is a 2-supported JS-CM, \mathbb{I} is 0-supported.

We call a JS-CM **local** if it is ℓ -supported with $\ell \leq N/2$.

JS results for Mixed-field Ising chain

Let $J_Z \neq 0$ and consider the Hamiltonian

$$H = \sum_{i=1}^{N} J_{Z} Z_{i} Z_{i+1} + \sum_{i=1}^{N} (h_{X} X_{i} + h_{Z} Z_{i}).$$

JS-non-integrability of mixed-field Ising chain

Chiba'24

If $h_X, h_Z \neq 0$, then **H** is the unique non-trivial local JS-CM.

That is:

- There exists no *L*-supported JS-CM for L=1 or $3 \le L \le N/2$.
- ullet Every 2-supported JS-CM is a linear combination of H and \mathbb{I} .

Completeness of JS results

If $h_X = 0$ or $h_Z = 0$, then for any L there exists a non-trivial L-supported JS-CM.

That is, turning on the other magnetic field kills all these additional local constants of motion!

Similar results hold for other well-known models (1D and beyond). Proof strategy is always the same.

Setup. Suppose that $Q \in \mathcal{U}_{\Lambda_0}$ is an L-supported JS-CM. We expand it in Pauli basis as

$$Q = \sum_{\ell=0}^{L} \sum_{\substack{A \in \mathcal{P}_{\Lambda_{\mathbf{0}}} \\ D(A) = \ell}} c_A A$$

Plugging in the formulas for Q and H,

$$\sum_{\ell=0}^{L+1} \sum_{\substack{A \in \mathcal{P}_{\Lambda_{\mathbf{0}}} \\ D(A) = \ell}} r_A A = [Q, H] = \sum_{\ell=0}^{L} \sum_{\substack{A \in \mathcal{P}_{\Lambda_{\mathbf{0}}} \\ D(A) = \ell}} \sum_{i=1}^{N} c_A \Big(J_Z[A, Z_i Z_{i+1}] + h_X[A, X_i] + h_Z[A, Z_i] \Big)$$

Using [Q, H] = 0, i.e.,

$$r_A = 0$$
 for all $A \in \mathcal{P}_{\Lambda_0}$

and comparing both sides, we get a system of linear equations for c_A .

Step 1. If $3 \le L \le N/2$, then $c_A = 0$ for all A such that D(A) = L, which means $D(Q) \le L - 1$, contradiction.

Step 2. Work out by hand 1-supported and 2-supported JS-CMs to complete the proof.

JS column notation for commutators

When [A,B] = C, we say that C is **generated** by A and B.

For example, $X_i Y_{i+1} Y_{i+2} Z_{i+3}$ in [Q, H] is generated by

$$[Y_iY_{i+1}Y_{i+2}Z_{i+3}, Z_i] = 2iX_iY_{i+1}Y_{i+2}Z_{i+3}$$
$$[X_iY_{i+1}Y_{i+2}Y_{i+3}, X_{i+3}] = 2iX_iY_{i+1}Y_{i+2}Z_{i+3}$$
$$[X_iY_{i+1}X_{i+2}, Z_{i+2}Z_{i+3}] = -2iX_iY_{i+1}Y_{i+2}Z_{i+3}$$

We express these commutators as

These relations allow us to write the following linear equation

$$h_Z c_{YYYZ} + h_X c_{XYYY} - J_Z c_{XYX} + \ldots = r_{XYYZ} = 0$$

Let $L \ge 2$ and consider a string $A = A_i^1 \cdots A_{i+L-1}^L \in \mathcal{P}_{\Lambda_0}$ of length L appearing in $Q = \sum_{\ell=0}^L \sum_{\substack{A \in \mathcal{P}_{\Lambda_0} \\ D(A) = \ell}} c_A A$ We show $c_A = 0$ for several classes of strings, depending on their endpoints.

Case 1. If $(A^1, A^L) = (X, Y)$ then $c_A = 0$. We note that

The generated string $XA^2 \cdots A^{L-1}XZ$ has length L+1. Note there is **no other way** to generate it! This gives

$$J_Z c_{XA^2...A^{L-1}Y}^L = r_{XA^2...A^{L-1}XZ}^{L+1}.$$

Since $r_{XA^2...A^{L-1}XZ}^{L+1}=0$ and $J_Z\neq 0$, we get $c_{XA^2...A^{L-1}Y}^{L}=0$ as claimed.

Analogous proofs for strings of length L with endpoints (X,X), (Y,Y), (Y,X).

- Since the endpoints $YA^2 \cdots A^{l-1}X$ are both non-Z, this string cannot arise via the action of ZZ.
- However, the action of X or Z inside the string is possible. Here's one example:

- Since the endpoints $YA^2 \cdots A^{l-1}X$ are both non-Z, this string cannot arise via the action of ZZ.
- However, the action of X or Z inside the string is possible. Here's one example:

$$h_X c_{Z...X}^L - h_Z \underbrace{c_{X...X}^L + h_Z \underbrace{c_{Y...Y}^L}_{c_Y^L ...Y}} + \underbrace{\sum h_{X/Z} \underbrace{c_{Y...X}^L}_{c_Y^L ...X}}_{\text{in side action}} = r_{Y...X}^L = 0$$

- Since the endpoints $YA^2 \cdots A^{l-1}X$ are both non-Z, this string cannot arise via the action of ZZ.
- However, the action of X or Z inside the string is possible. Here's one example:

$$h_X c_{Z...X}^L - h_Z \underbrace{c_{X...X}^L + h_Z \underbrace{c_{Y...Y}^L}_{c_Y^L ...Y}} + \underbrace{\sum h_{X/Z} \underbrace{c_{Y...X}^L}_{c_Y^L ...X}}_{\text{in side action}} = r_{Y...X}^L = 0$$

- Since the endpoints $YA^2 \cdots A^{l-1}X$ are both non-Z, this string cannot arise via the action of ZZ.
- However, the action of X or Z inside the string is possible. Here's one example:

$$h_X c_Z^L \dots x - h_Z \underbrace{c_X^L \dots x}_{=\mathbf{0}} + h_Z \underbrace{c_Y^L \dots y}_{=\mathbf{0}} + \underbrace{\sum_{\mathbf{0}}^{\text{in side action}}}_{\mathbf{0}} = r_Y^L \dots x = 0$$

- Since the endpoints $YA^2 \cdots A^{L-1}X$ are both non-Z, this string cannot arise via the action of ZZ.
- ullet However, the action of X or Z inside the string is possible. Here's one example:

- So strings of length L with endpoints (Z, X) and (X, Z) also vanish. Still remain: (Z, Z), (Z, Y), (Y, Z)
- We continue until we show all of them vanish, hence D(Q) < L.
- The tricky part is to find the optimal order in which we consider and eliminate various types of c_A as it highly depends on the model. In this regard, we exactly follow [Chiba'24].

Reduction step & connecting the setups

Reduction step

We now drop the periodic boundary condition. For simplicity we consider 1D, but all transfers to higher dim.

SD+ Property: characterization of $\mathfrak{C}(\alpha_{\Phi})$ via commuting dynamics

Jakšić, Pillet, S, Tauber'25

Let $\Phi, \Psi \in \mathcal{B}_{\mathrm{f}}$. Then $E_{\Psi_+} \in \mathfrak{C}(\alpha_{\Phi})$ iff $\alpha_{\Phi}^t \circ \alpha_{\Psi}^s = \alpha_{\Psi}^s \circ \alpha_{\Phi}^t$.

Remark. [Araki'90] was the first to discuss constants of motion in the setting of infinitely extended quantum spin systems, defining them via $\delta_{\Phi} \circ \delta_{\Psi} = \delta_{\Psi} \circ \delta_{\Phi}$ on \mathcal{U}_{loc} . Under SD+, the two definitions are equivalent.

We fix the box $\Lambda_0 = \{1, \dots, N\}$. For some bigger box Λ we have

$$[H_{\Phi}(\Lambda),[H_{\Psi}(\Lambda),A]]=[H_{\Psi}(\Lambda),[H_{\Phi}(\Lambda),A]] \qquad \forall A\in \mathcal{U}_{\Lambda_{\boldsymbol{0}}}$$

and the Jacobi identity gives

$$[[H_{\Psi}(\Lambda), H_{\Phi}(\Lambda)], A] = 0 \qquad \forall A \in \mathcal{U}_{\Lambda_{\mathbf{0}}}$$

Then by standard calculations we obtain

$$\operatorname{tr}_{\Lambda \setminus \Lambda_{\boldsymbol{0}}}([H_{\Psi}(\Lambda),H_{\Phi}(\Lambda)]) = 0.$$

Reduction step

By standard calculations we obtain

$$\operatorname{tr}_{\Lambda \setminus \Lambda_{\boldsymbol{0}}}([H_{\Psi}(\Lambda),H_{\Phi}(\Lambda)]) = 0.$$

and substitute into it

$$H_{\Psi}(\Lambda) = H_{\Psi}(\Lambda_0) + H_{\Psi}(\Lambda \setminus \Lambda_0) + W_{\Psi}(\Lambda_0),$$

$$H_{\Phi}(\Lambda) = H_{\Phi}(\Lambda_0) + H_{\Phi}(\Lambda \setminus \Lambda_0) + W_{\Phi}(\Lambda_0)$$

This leads to

$$[H_{\Psi}(\Lambda_0),H_{\Phi}(\Lambda_0)]+\mathcal{W}=-\operatorname{tr}_{\Lambda\setminus\Lambda_0}([W_{\Psi}(\Lambda_0),W_{\Phi}(\Lambda_0)])$$

where

$$\mathcal{W} = \operatorname{tr}_{\Lambda \setminus \Lambda_0} \left(\left[W_{\Psi}(\Lambda_0), H_{\Phi}(\Lambda_0) \right] + \left[H_{\Psi}(\Lambda_0), W_{\Phi}(\Lambda_0) \right] + \left[H_{\Psi}(\Lambda \setminus \Lambda_0), W_{\Phi}(\Lambda_0) \right] + \left[W_{\Psi}(\Lambda_0), H_{\Phi}(\Lambda \setminus \Lambda_0) \right] \right).$$

Reduction step

By standard calculations we obtain

$$\operatorname{tr}_{\Lambda \setminus \Lambda_{\boldsymbol{0}}}([H_{\Psi}(\Lambda),H_{\Phi}(\Lambda)]) = 0.$$

and substitute into it

$$H_{\Psi}(\Lambda) = H_{\Psi}(\Lambda_0) + H_{\Psi}(\Lambda \setminus \Lambda_0) + W_{\Psi}(\Lambda_0),$$

$$H_{\Phi}(\Lambda) = H_{\Phi}(\Lambda_0) + H_{\Phi}(\Lambda \setminus \Lambda_0) + W_{\Phi}(\Lambda_0)$$

This leads to

$$[\textit{H}_{\Psi}(\Lambda_0),\textit{H}_{\Phi}(\Lambda_0)] + \mathcal{W} = -\operatorname{tr}_{\Lambda \setminus \Lambda_0}([\textit{W}_{\Psi}(\Lambda_0),\textit{W}_{\Phi}(\Lambda_0)])$$

where

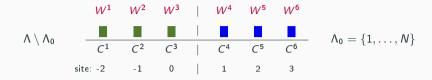
$$\mathcal{W} = \operatorname{tr}_{\Lambda \setminus \Lambda_0} \left(\left[W_{\Psi}(\Lambda_0), H_{\Phi}(\Lambda_0) \right] + \left[H_{\Psi}(\Lambda_0), W_{\Phi}(\Lambda_0) \right] + \left[H_{\Psi}(\Lambda \setminus \Lambda_0), W_{\Phi}(\Lambda_0) \right] + \left[W_{\Psi}(\Lambda_0), H_{\Phi}(\Lambda \setminus \Lambda_0) \right] \right).$$

We will now prove that $\mathcal{W} = 0$, so

$$[H_{\Psi}(\Lambda_0),H_{\Phi}(\Lambda_0)]=-\operatorname{tr}_{\Lambda\setminus\Lambda_0}([W_{\Psi}(\Lambda_0),W_{\Phi}(\Lambda_0)])=:Q'$$

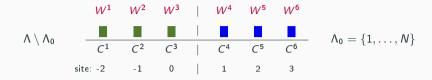
Then we will prove that if $H_{\Psi}(\Lambda_0)$ is L-supported for some L, then Q' is at most (L-1)-supported.

Intuition: $H_{\Psi}(\Lambda_0)$ is a candidate for a constant of motion. Recall JS-CM condition: [Q,H]=0.



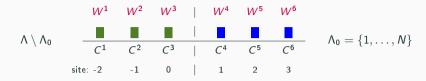
C := [W, H] = [Pauli string W stretching across the boundary of Λ_0 , Pauli string H fully inside or outside $\Lambda_0]$

When $\operatorname{tr}_{\Lambda \setminus \Lambda_{\mathbf{0}}} C \neq 0$?



C := [W, H] = [Pauli string W stretching across the boundary of Λ_0 , Pauli string H fully inside or outside $\Lambda_0]$

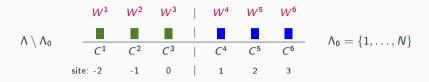
When $\operatorname{tr}_{\Lambda \setminus \Lambda_{\mathbf{0}}} C \neq 0$?



C := [W, H] = [Pauli string W stretching across the boundary of Λ_0 , Pauli string H fully inside or outside $\Lambda_0]$ When $\operatorname{tr}_{\Lambda \setminus \Lambda_0} C \neq 0$?

- $C = [W, H] \neq 0$ only if there is an odd number of Pauli matrices flipped to other Pauli matrices.
- Assume $C \neq 0$. Then $\mathrm{tr}_{\Lambda \setminus \Lambda_0}(C^1C^2C^3|C^4C^5C^6) = \mathrm{tr}(C^1C^2C^3)C^4C^5C^6$
- $\operatorname{tr}(C^{1}C^{2}C^{3}) \neq 0$ only if $C^{1} = C^{2} = C^{3} = \mathbb{I}$

So $\operatorname{tr}_{\Lambda\setminus\Lambda_0} C \neq 0$ only if Pauli matrices both inside and outside Λ_0 are affected.

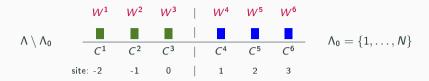


C := [W, H] = [Pauli string W stretching across the boundary of Λ_0 , Pauli string H fully inside or outside $\Lambda_0]$ When $\operatorname{tr}_{\Lambda \setminus \Lambda_0} C \neq 0$?

- $C = [W, H] \neq 0$ only if there is an odd number of Pauli matrices flipped to other Pauli matrices.
- Assume $C \neq 0$. Then $\mathrm{tr}_{\Lambda \setminus \Lambda_0}(C^1C^2C^3|C^4C^5C^6) = \mathrm{tr}(C^1C^2C^3)C^4C^5C^6$
- $\operatorname{tr}(C^1C^2C^3) \neq 0$ only if $C^1 = C^2 = C^3 = \mathbb{I}$

So $\operatorname{tr}_{\Lambda\setminus\Lambda_0} C \neq 0$ only if Pauli matrices **both inside and outside** Λ_0 are affected.

But H acts either inside or outside, contradiction. Thus $[H_{\Psi}(\Lambda_0),H_{\Phi}(\Lambda_0)]=-\operatorname{tr}_{\Lambda\setminus\Lambda_0}([W_{\Psi}(\Lambda_0),W_{\Phi}(\Lambda_0)])$



C := [W, H] = [Pauli string W stretching across the boundary of Λ_0 , Pauli string H fully inside or outside $\Lambda_0]$ When $\operatorname{tr}_{\Lambda \setminus \Lambda_0} C \neq 0$?

- $C = [W, H] \neq 0$ only if there is an odd number of Pauli matrices flipped to other Pauli matrices.
- Assume $C \neq 0$. Then $\operatorname{tr}_{\Lambda \setminus \Lambda_0}(C^1C^2C^3|C^4C^5C^6) = \operatorname{tr}(C^1C^2C^3)C^4C^5C^6$

Note these conditions hold

• $\operatorname{tr}(C^1C^2C^3) \neq 0$ only if $C^1 = C^2 = C^3 = \mathbb{I}$

for every string C given

So $\operatorname{tr}_{\Lambda\setminus\Lambda_0} C \neq 0$ only if Pauli matrices both inside and outside Λ_0 are affected.

by some commutator!

But H acts either inside or outside, contradiction. Thus $[H_{\Psi}(\Lambda_0),H_{\Phi}(\Lambda_0)]=-\operatorname{tr}_{\Lambda\setminus\Lambda_0}([W_{\Psi}(\Lambda_0),W_{\Phi}(\Lambda_0)])$

Proof that $\overline{D(Q')} \leq L-1$

Suppose $H_{\Psi}(\Lambda)$ is L-supported for some $L \in \mathbb{N}$. We claim that

$$D(Q') \leq L - 1$$
 for $Q' := \operatorname{tr}_{\Lambda \setminus \Lambda_0}([W_{\Phi}(\Lambda_0), W_{\Psi}(\Lambda_0)])$

Consider

$$C:=[W,\widetilde{W}]=[$$
 Pauli string W across the boundary of Λ_0 , Pauli string \widetilde{W} across the boundary of $\Lambda_0]$

Recall that $\operatorname{tr}_{\Lambda\setminus\Lambda_0} C \neq 0$ only if $C = \mathbb{I} \cdots \mathbb{I} \mid C^i C^{i+1} \cdots C^L$ with $i \geq 2$.

Proof that $D(Q') \leq L - 1$

Suppose $H_{\Psi}(\Lambda)$ is L-supported for some $L \in \mathbb{N}$. We claim that

$$D(Q') \leq L-1$$
 for $Q' := \operatorname{tr}_{\Lambda \setminus \Lambda_0}([W_{\Phi}(\Lambda_0), W_{\Psi}(\Lambda_0)])$

Consider

$$\mathcal{C}:=[W,\widetilde{W}]=[$$
 Pauli string W across the boundary of Λ_0 , Pauli string \widetilde{W} across the boundary of Λ_0]

Recall that $\operatorname{tr}_{\Lambda\setminus\Lambda_0}C\neq 0$ only if $C=\mathbb{I}\cdots\mathbb{I}\mid C^iC^{i+1}\cdots C^L$ with $i\geq 2$.

In consequence,
$$\operatorname{tr}_{\Lambda \setminus \Lambda_{\mathbf{0}}}(C) = C^{i}C^{i+1} \cdots C^{L} \quad \text{is supported inside} \quad \{1, \dots, L-1\}$$
 thus it is of the form $A_{1} \otimes \cdots \otimes A_{L-1}$

The other endpoint of Λ_0 analogously. So $\operatorname{tr}_{\Lambda\setminus\Lambda_0}(C)$ is a lin. comb. of $A_1\cdots A_{L-1}$ and $A_{N-L+2}\cdots A_N$

Recovering the JS proof structure

Recall $\Psi \in \mathcal{B}_{\mathrm{f}}$ is a candidate for a Constant of Motion. We know that $H_{\Psi}(\Lambda)$ is L-supported for $L \in \mathbb{N}$.

Assume $\Phi \in \mathcal{B}_{\mathrm{f}}$ generates

$$H_{\Phi}(\Lambda_0) = \sum_{i=1}^{N-1} (J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + J_Z Z_i Z_{i+1}) + \sum_{i=1}^{N} (h_X X_i + h_Y Y_i + h_Z Z_i),$$

$$\underbrace{ \begin{array}{c} \xrightarrow{\text{Reduction step}} \end{array} } \quad [H_{\Psi}(\Lambda_0), H_{\Phi}(\Lambda_0)] \ = \ \underbrace{-\operatorname{tr}_{\Lambda_0^c}([W_{\Psi}(\Lambda_0), W_{\Phi}(\Lambda_0)])}_{Q'} \ \stackrel{\text{basis exp.}}{=} \ \sum_{\ell=0}^{L+1} \sum_{\substack{A \in \mathcal{P}_{\Lambda_0} \\ D(A) = \ell}} r_A A$$

AND we know that $D(Q') \le L - 1$, which means $r_A = 0$ if $D(A) \in \{L, L + 1\}$.

Recall in JS setup we have $r_A = 0$ for all A. Here we have less, but we also know the structure of Q':

Crucial properties of Q'

 $D(Q') \leq L-1$ and Q' is a linear comb. of the boundary-touching strings $A_1 \cdots A_{L-1}$ and $A_{N-L+2} \cdots A_N$

Mixed-field Ising chain is trivially admissible

Theorem.

Jakšić, Pillet, S, Tauber'25

Let
$$\Phi \in \mathcal{B}_f$$
 generate $H_{\Phi}(\Lambda_0) = \sum_{i=1}^{N-1} J_Z Z_i Z_{i+1} + \sum_{x=1}^N (h_X X_i + h_Z Z_i)$ with $h_X, h_Z \neq 0$. Then $\mathfrak{C}(\alpha_{\Phi}) = \{E_{\Phi}\}$.

Step 1.

(As in JS, be careful about the boundary)

Assume $3 \le L \le \frac{N}{2}$. Using $r_A = 0$ if $D(A) \in \{L, L+1\}$, we show $c_A = 0$ for every string A of length L; hence, $D(H_{\Psi}(\Lambda_0)) \le L - 1$. This contradicts the assumption that $H_{\Psi}(\Lambda_0)$ is L-supported.

Miraculously, the JS proof only uses $r_A = 0$ for A of length L and L + 1, so we can follow it. We just need some technical tweaks due to boundary.

Step 2.

(Extra knowledge about Q' needed, then as in JS)

We investigate by hand the cases L=1 and L=2, showing that $H_{\Psi}(\Lambda_0)=H_{\Phi}(\Lambda_0)$ (up to equivalence)

Here the JS proof uses the full strength of its assumptions, while we have less. But we can make up for it by exploiting the properties of Q' derived earlier, and then we can again follow JS.

Step 1.

We assume $3 \le L \le N/2$ and for a string A of length L show:

- (i) $c_A = 0$ if A is **not** of the form $Z \cdots Y$ or $Y \cdots Z$ or $Z \cdots Z$.
- (ii) $c_A = 0$ if A is the form $Z \cdots Y$ or $Y \cdots Z$.
- (iii) $c_A = 0$ if A is the form $Z \cdots Z$.

This contradicts the assumption that $H_{\Psi}(\Lambda_0)$ is L-supported. Hence $H_{\Psi}(\Lambda_0)$ is at most 2-supported

We follow very closely the JS proof but we have to be careful about the boundary:

- Some equations do not hold for the boundary-touching strings as there is no Z_0Z_1 nor Z_NZ_{N+1} in $H_{\Phi}(\Lambda_0)$
- Shifting procedure: $c_{A_i} = c_{A'_{i+1}} = c_{A''_{i+2}} = \ldots = c_{\hat{A}_{i+k}} = 0$

In JS setup, periodicity allows an unlimited number of shifts to the right.

The boundary forces us to make sure that:

- The shifting procedure works in both directions
- There is sufficient space (either to the left or to the right) for the required number of shifts. This is where the assumption $L \le N/2$ comes from

Step 2.

We investigate by hand L=1 and L=2 and show that $H_{\Psi}(\Lambda_0)=\alpha H_{\Phi}(\Lambda_0)+\beta \mathbb{I}$

Step 2a. Assume L=2. Recall Q' is a linear combination of A_1 and A_N :

$$[H_{\Phi}(\Lambda_0), H_{\Psi}(\Lambda_0)] = Q' = (r_{X_1}X_1 + r_{Y_1}Y_1 + r_{Z_1}Z_1) + (r_{X_N}X_N + r_{Y_N}Y_N + r_{Z_N}Z_N) + r_I I$$

We must show that $r_{Z_1}=r_{Z_N}=0$. (Recall in JS we have Q'=0 automatically)

Recall that

$$Q':=-\operatorname{tr}_{\Lambda_0^c}([\mathcal{W}_\Phi(\Lambda_0),\mathcal{W}_\Psi(\Lambda_0)])\quad \text{ and } \quad \mathcal{W}_\Phi(\Lambda_0)=-\tfrac{1}{2}J_Z(Z_0Z_1+Z_NZ_{N+1})$$

Note there does not exist $A_0, A_1 \in \{X, Y, Z\}$ that satisfy the following commutation relation:

in consequence, $r_{Z_1} = 0 = r_{Z_N}$. Knowing that $r_{Z_j} = 0$ for all j, we can follow JS proof again.

Step 2b. First, show that the only potentially non-zero coefficients of $H_{\Psi}(\Lambda_0)$ are $c_{Z_iZ_i}$, c_{Z_i} , c_{X_i} , and $c_{\mathbb{I}}$.

We already know that for every j

$$c_{X_jX} = c_{X_jY} = c_{Y_jX} = c_{Y_jY} = c_{X_jZ} = c_{Z_jX} = 0$$

To show that $c_{Z_iY}=c_{Y_iZ}=c_{Y_i}=0$, we use Step 2a that guarantees $r_{Z_i}=0$ for every $j\in\Lambda_0$.

$$[Y_j, -X_j] = (2i) Z_j \implies -h_X c_{Y_j} = r_{Z_j} = 0 \implies c_{Y_j} = 0 \quad \forall j \in \Lambda_0$$

and

$$Y_j$$
 Y_j Z_{j+}

$$Z_j \qquad \Rightarrow \qquad Z_j$$

$$Z_{i+1}$$

$$\Rightarrow J_Z c_Y$$

$$1 < i < N - 1$$

Therefore
$$c_{Z_jY_{j+1}}=c_{Y_jZ_{j+1}}=0$$
 for all $1\leq j\leq N-1$

Step 2b. First, show that the **only potentially non-zero coefficients** of $H_{\Psi}(\Lambda_0)$ are c_{Z_jZ} , c_{Z_j} , c_{X_j} , and $c_{\mathbb{L}}$.

We already know that for every j

$$c_{X_iX} = c_{X_iY} = c_{Y_iX} = c_{Y_iY} = c_{X_iZ} = c_{Z_iX} = 0$$

To show that $c_{Z_iY}=c_{Y_iZ}=c_{Y_i}=0$, we use Step 2a that guarantees $r_{Z_i}=0$ for **every** $j\in\Lambda_0$.

Next, we show that the coefficients are in correct proportion (this also means L=1 is impossible):

$$c_{Z_jZ}/J_Z=c_{Z_j}/h_Z=c_{X_j}/h_X$$

Indeed,

The other one is analogous. Setting $lpha:=c_{\mathbb{I}}$ and $eta:=c_{X_j}/h_X$, we finally obtain

$$H_{\Psi}(\Lambda_0) = \alpha \mathbb{I} + \beta H_{\Phi}(\Lambda_0)$$

Recap for mixed-field Ising chain

Theorem.

Jakšić, Pillet, S, Tauber'25

Let
$$\Phi \in \mathcal{B}_f$$
 generate $H_{\Phi}(\Lambda_0) = \sum_{i=1}^{N-1} J_Z Z_i Z_{i+1} + \sum_{x=1}^N (h_X X_i + h_Z Z_i)$ with $h_X, h_Z \neq 0$. Then $\mathfrak{C}(\alpha_{\Phi}) = \{E_{\Phi}\}$.

- Main difference wrt JS: definition of Constants of Motion. JS-CM is stronger than our-CM.
 Also, periodic vs. open boundary condition, which entails technical tweaks.
- Open boundary condition are discussed in [Chiba'24] under JS-CM.
- Step 1 of JS proof does not use the full strength of JS-CM: While assuming Q'=0, it only uses $D(Q')\leq L-1$ (which is exactly what our-CM provides).
- Step 2 of JS proof uses the full strength of JS-CM: We catch up by using the explicit formula for $Q'=-\operatorname{tr}_{\Lambda_0^c}([W_\Phi(\Lambda_0),W_\Psi(\Lambda_0)]).$

Other models

Back to periodic boundary condition. Let $J_X, J_Y \neq 0$ and consider

$$H_{\Phi}(\Lambda_0) = \sum_{i=1}^N (J_X X_i X_{i+1} + J_Y Y_i Y_{i+1}) + \sum_{i=1}^N (h_X X_i + h_Y Y_i).$$

- If $h_X = h_Y = 0$, the XY model has infinitely many (non-trivial local) JS-CM [Lieb, Schultz, Mattis'61]
- If $h_X \neq 0$ or $h_Y \neq 0$:
 - If $J_Y = -J_X (h_Y/h_X)^2$ and N is even, then there are **two** JS-CMs:

$$H_{\Phi}(\Lambda_0)$$
 and $Q = \sum_{i=1}^N (-1)^i (h_X X_i + h_Y Y_i) (h_X X_{i+1} + h_Y Y_{i+1})$

• Otherwise, $H_{\Phi}(\Lambda_0)$ is the **unique** JS-CM

Back to periodic boundary condition. Let $J_X, J_y, J_Z \neq 0$ and consider

$$H_{\Phi}(\Lambda_0) = \sum_{i=1}^{N} (J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + J_Z Z_i Z_{i+1}) + \sum_{i=1}^{N} (h_X X_i + h_Y Y_i + h_Z Z_i).$$

• If $J_X = J_Y = J_Z$, the XXX model has infinitely many JS-CMs (for any h_X, h_Y, h_Z)

[Bet he'31]

- If $J_X = J_Y \neq J_7$:
 - if $h_X = h_Y = 0$, the XXZ model has infinitely many JS-CMs

[C.-N. Yang, C.-P. Yang'66]

- if $h_X \neq 0$ or $h_Y \neq 0$, then $H_{\Phi}(\Lambda_0)$ is the unique JS-CM
- If J_X , J_Y , J_Z are all different:
 - if $h_X = h_Y = h_Z = 0$, the XYZ model has infinitely many JS-CMs

[Baxter'71]

- if $J_X=-J_Y$ and $h_Z\neq 0$, there are **two** JS-CMs: $H_\Phi(\Lambda_0)$ and $Q=\sum_{i=1}^N (-1)^i h_Z Z_i$
- if at least one of h_X , h_Y , h_Z is non-zero, $H_{\Phi}(\Lambda_0)$ is the **unique** JS-CM

In particular, among such chains there is no missing integrable system that awaits to be discovered.

Summary of JS results: other models

Higher dim Ising model

Let $\Lambda_0 = \{1, \dots, N\}^d$. Assume $J_Z \neq 0$ and $h_X \neq 0$ and consider

$$H_{\Phi}(\Lambda_0) = \sum_{\substack{i,j \in \Lambda_{\mathbf{0}} \\ |i-j|=1}} J_Z Z_i Z_j + \sum_{i \in \Lambda_{\mathbf{0}}} (h_X X_i + h_Z Z_i).$$

Any local JS-CM is a linear combination of $H_{\Phi}(\Lambda_0)$ and \mathbb{I} .

Higher dim Heisenberg model

Shiraishi Tasaki'25

Chiba'25

Assume $J_X \neq 0$ and $J_Y \neq 0$ and consider

$$H_{\Phi}(\Lambda_0) = \sum_{\substack{i,j \in \Lambda_0 \ |i-j|=1}} (J_X X_i X_j + J_Y Y_i Y_j + J_Z Z_i Z_j) + \sum_{i \in \Lambda_0} (h_X X_i + h_Y Y_i + h_Z Z_i).$$

Any local JS-CM is a linear combination of $H_{\Phi}(\Lambda_0)$ and some one-body operator and \mathbb{I} .

Other 1D models considered by JS

- Heisenberg model with next-nearest-neighbor interaction [Shiraishi'24]
- PXP model [Park. Lee'24]
 - Spin-1 model with bilinear biquadratic interactions [Park, Lee'24], [Hokkyo, Yamaguchi, Chiba'24]

Outlook

- We keep working on getting all the JS results in our setting:
 - So far, only the Ising chain has been written down with all details
 - Next target is the XY chain JS have not considered open boundary condition for it
- Conjecture: generically, finite-range interactions have no non-trivial local constants of motion
- We are also looking at what happens to the dynamics when a transverse field is added to the classical Ising chain, which causes all the constants of motion to instantly disappear
- Remark: The course has only covered spin systems, but the results extend to lattice fermionic systems.